| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfiu1 |
|
| 2 |
|
nfcv |
|
| 3 |
1 2
|
nfdisjw |
|
| 4 |
|
disjss1 |
|
| 5 |
|
ssiun2 |
|
| 6 |
4 5
|
syl11 |
|
| 7 |
3 6
|
ralrimi |
|
| 8 |
7
|
a1i |
|
| 9 |
|
simplr |
|
| 10 |
|
ssiun2 |
|
| 11 |
|
nfcv |
|
| 12 |
|
nfcsb1v |
|
| 13 |
|
csbeq1a |
|
| 14 |
11 12 13
|
cbviun |
|
| 15 |
10 14
|
sseqtrrdi |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
|
csbeq1 |
|
| 19 |
18
|
sseq1d |
|
| 20 |
19 15
|
vtoclga |
|
| 21 |
20
|
adantl |
|
| 22 |
21
|
ad2antrl |
|
| 23 |
11 12 13
|
cbvdisj |
|
| 24 |
18
|
disjor |
|
| 25 |
23 24
|
sylbb |
|
| 26 |
|
rsp2 |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
imp |
|
| 29 |
28
|
ord |
|
| 30 |
29
|
impr |
|
| 31 |
30
|
adantlr |
|
| 32 |
|
disjiun |
|
| 33 |
9 17 22 31 32
|
syl13anc |
|
| 34 |
33
|
expr |
|
| 35 |
34
|
orrd |
|
| 36 |
35
|
ralrimivva |
|
| 37 |
18
|
iuneq1d |
|
| 38 |
37
|
disjor |
|
| 39 |
36 38
|
sylibr |
|
| 40 |
|
nfcv |
|
| 41 |
12 2
|
nfiun |
|
| 42 |
13
|
iuneq1d |
|
| 43 |
40 41 42
|
cbvdisj |
|
| 44 |
39 43
|
sylibr |
|
| 45 |
44
|
ex |
|
| 46 |
8 45
|
jcad |
|
| 47 |
14
|
eleq2i |
|
| 48 |
|
eliun |
|
| 49 |
47 48
|
bitri |
|
| 50 |
|
nfcv |
|
| 51 |
|
nfcsb1v |
|
| 52 |
|
csbeq1a |
|
| 53 |
50 51 52
|
cbviun |
|
| 54 |
53
|
eleq2i |
|
| 55 |
|
eliun |
|
| 56 |
54 55
|
bitri |
|
| 57 |
49 56
|
anbi12i |
|
| 58 |
|
reeanv |
|
| 59 |
57 58
|
bitr4i |
|
| 60 |
|
simplrr |
|
| 61 |
12 2
|
nfdisjw |
|
| 62 |
13
|
disjeq1d |
|
| 63 |
61 62
|
rspc |
|
| 64 |
63
|
impcom |
|
| 65 |
|
disjors |
|
| 66 |
64 65
|
sylib |
|
| 67 |
66
|
ad2ant2r |
|
| 68 |
67
|
adantr |
|
| 69 |
|
simplrl |
|
| 70 |
|
simplrr |
|
| 71 |
18
|
adantl |
|
| 72 |
70 71
|
eleqtrrd |
|
| 73 |
69 72
|
jca |
|
| 74 |
|
rsp2 |
|
| 75 |
74
|
imp |
|
| 76 |
68 73 75
|
syl2an2r |
|
| 77 |
76
|
adantlrr |
|
| 78 |
77
|
ord |
|
| 79 |
60 78
|
mpd |
|
| 80 |
|
ssiun2 |
|
| 81 |
|
nfcv |
|
| 82 |
|
nfcsb1v |
|
| 83 |
|
csbeq1a |
|
| 84 |
81 82 83
|
cbviun |
|
| 85 |
80 84
|
sseqtrrdi |
|
| 86 |
|
ssiun2 |
|
| 87 |
|
nfcv |
|
| 88 |
|
nfcsb1v |
|
| 89 |
|
csbeq1a |
|
| 90 |
87 88 89
|
cbviun |
|
| 91 |
86 90
|
sseqtrrdi |
|
| 92 |
|
ss2in |
|
| 93 |
85 91 92
|
syl2an |
|
| 94 |
93
|
ad2antrl |
|
| 95 |
|
nfcv |
|
| 96 |
|
nfcsb1v |
|
| 97 |
96 2
|
nfiun |
|
| 98 |
|
csbeq1a |
|
| 99 |
98
|
iuneq1d |
|
| 100 |
95 97 99
|
cbvdisj |
|
| 101 |
100
|
biimpi |
|
| 102 |
101
|
ad3antlr |
|
| 103 |
|
simplr |
|
| 104 |
|
id |
|
| 105 |
|
csbeq1 |
|
| 106 |
105
|
iuneq1d |
|
| 107 |
|
csbeq1 |
|
| 108 |
107
|
iuneq1d |
|
| 109 |
106 108
|
disji2 |
|
| 110 |
102 103 104 109
|
syl2an3an |
|
| 111 |
|
sseq0 |
|
| 112 |
94 110 111
|
syl2an2r |
|
| 113 |
79 112
|
pm2.61dane |
|
| 114 |
113
|
expr |
|
| 115 |
114
|
orrd |
|
| 116 |
115
|
ex |
|
| 117 |
116
|
rexlimdvva |
|
| 118 |
59 117
|
biimtrid |
|
| 119 |
118
|
ralrimivv |
|
| 120 |
|
disjors |
|
| 121 |
119 120
|
sylibr |
|
| 122 |
46 121
|
impbid1 |
|