Metamath Proof Explorer


Theorem dprdf1o

Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdf1o.1 φGdomDProdS
dprdf1o.2 φdomS=I
dprdf1o.3 φF:J1-1 ontoI
Assertion dprdf1o φGdomDProdSFGDProdSF=GDProdS

Proof

Step Hyp Ref Expression
1 dprdf1o.1 φGdomDProdS
2 dprdf1o.2 φdomS=I
3 dprdf1o.3 φF:J1-1 ontoI
4 eqid CntzG=CntzG
5 eqid 0G=0G
6 eqid mrClsSubGrpG=mrClsSubGrpG
7 dprdgrp GdomDProdSGGrp
8 1 7 syl φGGrp
9 f1of1 F:J1-1 ontoIF:J1-1I
10 3 9 syl φF:J1-1I
11 1 2 dprddomcld φIV
12 f1dmex F:J1-1IIVJV
13 10 11 12 syl2anc φJV
14 1 2 dprdf2 φS:ISubGrpG
15 f1of F:J1-1 ontoIF:JI
16 3 15 syl φF:JI
17 fco S:ISubGrpGF:JISF:JSubGrpG
18 14 16 17 syl2anc φSF:JSubGrpG
19 1 adantr φxJyJxyGdomDProdS
20 2 adantr φxJyJxydomS=I
21 16 adantr φxJyJxyF:JI
22 simpr1 φxJyJxyxJ
23 21 22 ffvelcdmd φxJyJxyFxI
24 simpr2 φxJyJxyyJ
25 21 24 ffvelcdmd φxJyJxyFyI
26 simpr3 φxJyJxyxy
27 10 adantr φxJyJxyF:J1-1I
28 f1fveq F:J1-1IxJyJFx=Fyx=y
29 27 22 24 28 syl12anc φxJyJxyFx=Fyx=y
30 29 necon3bid φxJyJxyFxFyxy
31 26 30 mpbird φxJyJxyFxFy
32 19 20 23 25 31 4 dprdcntz φxJyJxySFxCntzGSFy
33 fvco3 F:JIxJSFx=SFx
34 21 22 33 syl2anc φxJyJxySFx=SFx
35 fvco3 F:JIyJSFy=SFy
36 21 24 35 syl2anc φxJyJxySFy=SFy
37 36 fveq2d φxJyJxyCntzGSFy=CntzGSFy
38 32 34 37 3sstr4d φxJyJxySFxCntzGSFy
39 16 33 sylan φxJSFx=SFx
40 imaco SFJx=SFJx
41 3 adantr φxJF:J1-1 ontoI
42 dff1o3 F:J1-1 ontoIF:JontoIFunF-1
43 42 simprbi F:J1-1 ontoIFunF-1
44 imadif FunF-1FJx=FJFx
45 41 43 44 3syl φxJFJx=FJFx
46 f1ofo F:J1-1 ontoIF:JontoI
47 foima F:JontoIFJ=I
48 41 46 47 3syl φxJFJ=I
49 f1ofn F:J1-1 ontoIFFnJ
50 3 49 syl φFFnJ
51 fnsnfv FFnJxJFx=Fx
52 50 51 sylan φxJFx=Fx
53 52 eqcomd φxJFx=Fx
54 48 53 difeq12d φxJFJFx=IFx
55 45 54 eqtrd φxJFJx=IFx
56 55 imaeq2d φxJSFJx=SIFx
57 40 56 eqtrid φxJSFJx=SIFx
58 57 unieqd φxJSFJx=SIFx
59 58 fveq2d φxJmrClsSubGrpGSFJx=mrClsSubGrpGSIFx
60 39 59 ineq12d φxJSFxmrClsSubGrpGSFJx=SFxmrClsSubGrpGSIFx
61 1 adantr φxJGdomDProdS
62 2 adantr φxJdomS=I
63 16 ffvelcdmda φxJFxI
64 61 62 63 5 6 dprddisj φxJSFxmrClsSubGrpGSIFx=0G
65 60 64 eqtrd φxJSFxmrClsSubGrpGSFJx=0G
66 eqimss SFxmrClsSubGrpGSFJx=0GSFxmrClsSubGrpGSFJx0G
67 65 66 syl φxJSFxmrClsSubGrpGSFJx0G
68 4 5 6 8 13 18 38 67 dmdprdd φGdomDProdSF
69 rnco2 ranSF=SranF
70 forn F:JontoIranF=I
71 3 46 70 3syl φranF=I
72 71 imaeq2d φSranF=SI
73 ffn S:ISubGrpGSFnI
74 fnima SFnISI=ranS
75 14 73 74 3syl φSI=ranS
76 72 75 eqtrd φSranF=ranS
77 69 76 eqtrid φranSF=ranS
78 77 unieqd φranSF=ranS
79 78 fveq2d φmrClsSubGrpGranSF=mrClsSubGrpGranS
80 6 dprdspan GdomDProdSFGDProdSF=mrClsSubGrpGranSF
81 68 80 syl φGDProdSF=mrClsSubGrpGranSF
82 6 dprdspan GdomDProdSGDProdS=mrClsSubGrpGranS
83 1 82 syl φGDProdS=mrClsSubGrpGranS
84 79 81 83 3eqtr4d φGDProdSF=GDProdS
85 68 84 jca φGdomDProdSFGDProdSF=GDProdS