Metamath Proof Explorer


Theorem dprdres

Description: Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdres.1 φGdomDProdS
dprdres.2 φdomS=I
dprdres.3 φAI
Assertion dprdres φGdomDProdSAGDProdSAGDProdS

Proof

Step Hyp Ref Expression
1 dprdres.1 φGdomDProdS
2 dprdres.2 φdomS=I
3 dprdres.3 φAI
4 dprdgrp GdomDProdSGGrp
5 1 4 syl φGGrp
6 1 2 dprdf2 φS:ISubGrpG
7 6 3 fssresd φSA:ASubGrpG
8 1 ad2antrr φxAyAxGdomDProdS
9 2 ad2antrr φxAyAxdomS=I
10 3 ad2antrr φxAyAxAI
11 simplr φxAyAxxA
12 10 11 sseldd φxAyAxxI
13 eldifi yAxyA
14 13 adantl φxAyAxyA
15 10 14 sseldd φxAyAxyI
16 eldifsni yAxyx
17 16 adantl φxAyAxyx
18 17 necomd φxAyAxxy
19 eqid CntzG=CntzG
20 8 9 12 15 18 19 dprdcntz φxAyAxSxCntzGSy
21 11 fvresd φxAyAxSAx=Sx
22 14 fvresd φxAyAxSAy=Sy
23 22 fveq2d φxAyAxCntzGSAy=CntzGSy
24 20 21 23 3sstr4d φxAyAxSAxCntzGSAy
25 24 ralrimiva φxAyAxSAxCntzGSAy
26 fvres xASAx=Sx
27 26 adantl φxASAx=Sx
28 27 ineq1d φxASAxmrClsSubGrpGSAAx=SxmrClsSubGrpGSAAx
29 eqid BaseG=BaseG
30 29 subgacs GGrpSubGrpGACSBaseG
31 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
32 5 30 31 3syl φSubGrpGMooreBaseG
33 32 adantr φxASubGrpGMooreBaseG
34 eqid mrClsSubGrpG=mrClsSubGrpG
35 resss SAS
36 imass1 SASSAAxSAx
37 35 36 ax-mp SAAxSAx
38 3 adantr φxAAI
39 ssdif AIAxIx
40 imass2 AxIxSAxSIx
41 38 39 40 3syl φxASAxSIx
42 37 41 sstrid φxASAAxSIx
43 42 unissd φxASAAxSIx
44 imassrn SIxranS
45 6 frnd φranSSubGrpG
46 29 subgss xSubGrpGxBaseG
47 velpw x𝒫BaseGxBaseG
48 46 47 sylibr xSubGrpGx𝒫BaseG
49 48 ssriv SubGrpG𝒫BaseG
50 45 49 sstrdi φranS𝒫BaseG
51 50 adantr φxAranS𝒫BaseG
52 44 51 sstrid φxASIx𝒫BaseG
53 sspwuni SIx𝒫BaseGSIxBaseG
54 52 53 sylib φxASIxBaseG
55 33 34 43 54 mrcssd φxAmrClsSubGrpGSAAxmrClsSubGrpGSIx
56 sslin mrClsSubGrpGSAAxmrClsSubGrpGSIxSxmrClsSubGrpGSAAxSxmrClsSubGrpGSIx
57 55 56 syl φxASxmrClsSubGrpGSAAxSxmrClsSubGrpGSIx
58 1 adantr φxAGdomDProdS
59 2 adantr φxAdomS=I
60 3 sselda φxAxI
61 eqid 0G=0G
62 58 59 60 61 34 dprddisj φxASxmrClsSubGrpGSIx=0G
63 57 62 sseqtrd φxASxmrClsSubGrpGSAAx0G
64 6 ffvelcdmda φxISxSubGrpG
65 60 64 syldan φxASxSubGrpG
66 61 subg0cl SxSubGrpG0GSx
67 65 66 syl φxA0GSx
68 43 54 sstrd φxASAAxBaseG
69 34 mrccl SubGrpGMooreBaseGSAAxBaseGmrClsSubGrpGSAAxSubGrpG
70 33 68 69 syl2anc φxAmrClsSubGrpGSAAxSubGrpG
71 61 subg0cl mrClsSubGrpGSAAxSubGrpG0GmrClsSubGrpGSAAx
72 70 71 syl φxA0GmrClsSubGrpGSAAx
73 67 72 elind φxA0GSxmrClsSubGrpGSAAx
74 73 snssd φxA0GSxmrClsSubGrpGSAAx
75 63 74 eqssd φxASxmrClsSubGrpGSAAx=0G
76 28 75 eqtrd φxASAxmrClsSubGrpGSAAx=0G
77 25 76 jca φxAyAxSAxCntzGSAySAxmrClsSubGrpGSAAx=0G
78 77 ralrimiva φxAyAxSAxCntzGSAySAxmrClsSubGrpGSAAx=0G
79 1 2 dprddomcld φIV
80 79 3 ssexd φAV
81 7 fdmd φdomSA=A
82 19 61 34 dmdprd AVdomSA=AGdomDProdSAGGrpSA:ASubGrpGxAyAxSAxCntzGSAySAxmrClsSubGrpGSAAx=0G
83 80 81 82 syl2anc φGdomDProdSAGGrpSA:ASubGrpGxAyAxSAxCntzGSAySAxmrClsSubGrpGSAAx=0G
84 5 7 78 83 mpbir3and φGdomDProdSA
85 rnss SASranSAranS
86 uniss ranSAranSranSAranS
87 35 85 86 mp2b ranSAranS
88 87 a1i φranSAranS
89 sspwuni ranS𝒫BaseGranSBaseG
90 50 89 sylib φranSBaseG
91 32 34 88 90 mrcssd φmrClsSubGrpGranSAmrClsSubGrpGranS
92 34 dprdspan GdomDProdSAGDProdSA=mrClsSubGrpGranSA
93 84 92 syl φGDProdSA=mrClsSubGrpGranSA
94 34 dprdspan GdomDProdSGDProdS=mrClsSubGrpGranS
95 1 94 syl φGDProdS=mrClsSubGrpGranS
96 91 93 95 3sstr4d φGDProdSAGDProdS
97 84 96 jca φGdomDProdSAGDProdSAGDProdS