Metamath Proof Explorer


Theorem dsmmlss

Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmlss.i φIW
dsmmlss.s φSRing
dsmmlss.r φR:ILMod
dsmmlss.k φxIScalarRx=S
dsmmlss.p P=S𝑠R
dsmmlss.u U=LSubSpP
dsmmlss.h H=BaseSmR
Assertion dsmmlss φHU

Proof

Step Hyp Ref Expression
1 dsmmlss.i φIW
2 dsmmlss.s φSRing
3 dsmmlss.r φR:ILMod
4 dsmmlss.k φxIScalarRx=S
5 dsmmlss.p P=S𝑠R
6 dsmmlss.u U=LSubSpP
7 dsmmlss.h H=BaseSmR
8 lmodgrp aLModaGrp
9 8 ssriv LModGrp
10 fss R:ILModLModGrpR:IGrp
11 3 9 10 sylancl φR:IGrp
12 5 7 1 2 11 dsmmsubg φHSubGrpP
13 5 2 1 3 4 prdslmodd φPLMod
14 13 adantr φaBaseScalarPbHPLMod
15 simprl φaBaseScalarPbHaBaseScalarP
16 simprr φaBaseScalarPbHbH
17 eqid SmR=SmR
18 eqid BaseP=BaseP
19 3 ffnd φRFnI
20 5 17 18 7 1 19 dsmmelbas φbHbBasePxI|bx0RxFin
21 20 adantr φaBaseScalarPbHbHbBasePxI|bx0RxFin
22 16 21 mpbid φaBaseScalarPbHbBasePxI|bx0RxFin
23 22 simpld φaBaseScalarPbHbBaseP
24 eqid ScalarP=ScalarP
25 eqid P=P
26 eqid BaseScalarP=BaseScalarP
27 18 24 25 26 lmodvscl PLModaBaseScalarPbBasePaPbBaseP
28 14 15 23 27 syl3anc φaBaseScalarPbHaPbBaseP
29 22 simprd φaBaseScalarPbHxI|bx0RxFin
30 eqid BaseS=BaseS
31 2 ad2antrr φaBaseScalarPbHxISRing
32 1 ad2antrr φaBaseScalarPbHxIIW
33 19 ad2antrr φaBaseScalarPbHxIRFnI
34 3 1 fexd φRV
35 5 2 34 prdssca φS=ScalarP
36 35 fveq2d φBaseS=BaseScalarP
37 36 eleq2d φaBaseSaBaseScalarP
38 37 biimpar φaBaseScalarPaBaseS
39 38 adantrr φaBaseScalarPbHaBaseS
40 39 adantr φaBaseScalarPbHxIaBaseS
41 23 adantr φaBaseScalarPbHxIbBaseP
42 simpr φaBaseScalarPbHxIxI
43 5 18 25 30 31 32 33 40 41 42 prdsvscafval φaBaseScalarPbHxIaPbx=aRxbx
44 43 adantrr φaBaseScalarPbHxIbx=0RxaPbx=aRxbx
45 3 ffvelcdmda φxIRxLMod
46 45 adantlr φaBaseScalarPbHxIRxLMod
47 simplrl φaBaseScalarPbHxIaBaseScalarP
48 35 adantr φxIS=ScalarP
49 4 48 eqtrd φxIScalarRx=ScalarP
50 49 fveq2d φxIBaseScalarRx=BaseScalarP
51 50 adantlr φaBaseScalarPbHxIBaseScalarRx=BaseScalarP
52 47 51 eleqtrrd φaBaseScalarPbHxIaBaseScalarRx
53 eqid ScalarRx=ScalarRx
54 eqid Rx=Rx
55 eqid BaseScalarRx=BaseScalarRx
56 eqid 0Rx=0Rx
57 53 54 55 56 lmodvs0 RxLModaBaseScalarRxaRx0Rx=0Rx
58 46 52 57 syl2anc φaBaseScalarPbHxIaRx0Rx=0Rx
59 oveq2 bx=0RxaRxbx=aRx0Rx
60 59 eqeq1d bx=0RxaRxbx=0RxaRx0Rx=0Rx
61 58 60 syl5ibrcom φaBaseScalarPbHxIbx=0RxaRxbx=0Rx
62 61 impr φaBaseScalarPbHxIbx=0RxaRxbx=0Rx
63 44 62 eqtrd φaBaseScalarPbHxIbx=0RxaPbx=0Rx
64 63 expr φaBaseScalarPbHxIbx=0RxaPbx=0Rx
65 64 necon3d φaBaseScalarPbHxIaPbx0Rxbx0Rx
66 65 ss2rabdv φaBaseScalarPbHxI|aPbx0RxxI|bx0Rx
67 29 66 ssfid φaBaseScalarPbHxI|aPbx0RxFin
68 5 17 18 7 1 19 dsmmelbas φaPbHaPbBasePxI|aPbx0RxFin
69 68 adantr φaBaseScalarPbHaPbHaPbBasePxI|aPbx0RxFin
70 28 67 69 mpbir2and φaBaseScalarPbHaPbH
71 70 ralrimivva φaBaseScalarPbHaPbH
72 24 26 18 25 6 islss4 PLModHUHSubGrpPaBaseScalarPbHaPbH
73 13 72 syl φHUHSubGrpPaBaseScalarPbHaPbH
74 12 71 73 mpbir2and φHU