| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvcnp.j |  | 
						
							| 2 |  | dvcnp.k |  | 
						
							| 3 |  | simpl2 |  | 
						
							| 4 | 3 | ffvelcdmda |  | 
						
							| 5 | 2 | cnfldtop |  | 
						
							| 6 |  | simpl1 |  | 
						
							| 7 |  | cnex |  | 
						
							| 8 |  | ssexg |  | 
						
							| 9 | 6 7 8 | sylancl |  | 
						
							| 10 |  | resttop |  | 
						
							| 11 | 5 9 10 | sylancr |  | 
						
							| 12 |  | simpl3 |  | 
						
							| 13 | 2 | cnfldtopon |  | 
						
							| 14 |  | resttopon |  | 
						
							| 15 | 13 6 14 | sylancr |  | 
						
							| 16 |  | toponuni |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 12 17 | sseqtrd |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 | ntrss2 |  | 
						
							| 21 | 11 18 20 | syl2anc |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | simp1 |  | 
						
							| 25 |  | simp2 |  | 
						
							| 26 |  | simp3 |  | 
						
							| 27 | 22 2 23 24 25 26 | eldv |  | 
						
							| 28 | 27 | simprbda |  | 
						
							| 29 | 21 28 | sseldd |  | 
						
							| 30 | 3 29 | ffvelcdmd |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 4 31 | subcld |  | 
						
							| 33 |  | ssid |  | 
						
							| 34 | 33 | a1i |  | 
						
							| 35 |  | txtopon |  | 
						
							| 36 | 13 13 35 | mp2an |  | 
						
							| 37 | 36 | toponrestid |  | 
						
							| 38 | 12 6 | sstrd |  | 
						
							| 39 | 3 38 29 | dvlem |  | 
						
							| 40 | 38 | ssdifssd |  | 
						
							| 41 | 40 | sselda |  | 
						
							| 42 | 38 29 | sseldd |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 41 43 | subcld |  | 
						
							| 45 | 27 | simplbda |  | 
						
							| 46 |  | limcresi |  | 
						
							| 47 |  | difss |  | 
						
							| 48 |  | resmpt |  | 
						
							| 49 | 47 48 | ax-mp |  | 
						
							| 50 | 49 | oveq1i |  | 
						
							| 51 | 46 50 | sseqtri |  | 
						
							| 52 | 42 | subidd |  | 
						
							| 53 | 2 | subcn |  | 
						
							| 54 | 53 | a1i |  | 
						
							| 55 |  | cncfmptid |  | 
						
							| 56 | 38 33 55 | sylancl |  | 
						
							| 57 |  | cncfmptc |  | 
						
							| 58 | 42 38 34 57 | syl3anc |  | 
						
							| 59 | 2 54 56 58 | cncfmpt2f |  | 
						
							| 60 |  | oveq1 |  | 
						
							| 61 | 59 29 60 | cnmptlimc |  | 
						
							| 62 | 52 61 | eqeltrrd |  | 
						
							| 63 | 51 62 | sselid |  | 
						
							| 64 | 2 | mulcn |  | 
						
							| 65 | 24 25 26 | dvcl |  | 
						
							| 66 |  | 0cn |  | 
						
							| 67 |  | opelxpi |  | 
						
							| 68 | 65 66 67 | sylancl |  | 
						
							| 69 | 36 | toponunii |  | 
						
							| 70 | 69 | cncnpi |  | 
						
							| 71 | 64 68 70 | sylancr |  | 
						
							| 72 | 39 44 34 34 2 37 45 63 71 | limccnp2 |  | 
						
							| 73 | 65 | mul01d |  | 
						
							| 74 | 3 | adantr |  | 
						
							| 75 |  | simpr |  | 
						
							| 76 | 47 75 | sselid |  | 
						
							| 77 | 74 76 | ffvelcdmd |  | 
						
							| 78 | 30 | adantr |  | 
						
							| 79 | 77 78 | subcld |  | 
						
							| 80 |  | eldifsni |  | 
						
							| 81 | 80 | adantl |  | 
						
							| 82 | 41 43 81 | subne0d |  | 
						
							| 83 | 79 44 82 | divcan1d |  | 
						
							| 84 | 83 | mpteq2dva |  | 
						
							| 85 | 84 | oveq1d |  | 
						
							| 86 | 72 73 85 | 3eltr3d |  | 
						
							| 87 | 32 | fmpttd |  | 
						
							| 88 | 87 | limcdif |  | 
						
							| 89 |  | resmpt |  | 
						
							| 90 | 47 89 | ax-mp |  | 
						
							| 91 | 90 | oveq1i |  | 
						
							| 92 | 88 91 | eqtrdi |  | 
						
							| 93 | 86 92 | eleqtrrd |  | 
						
							| 94 |  | cncfmptc |  | 
						
							| 95 | 30 38 34 94 | syl3anc |  | 
						
							| 96 |  | eqidd |  | 
						
							| 97 | 95 29 96 | cnmptlimc |  | 
						
							| 98 | 2 | addcn |  | 
						
							| 99 |  | opelxpi |  | 
						
							| 100 | 66 30 99 | sylancr |  | 
						
							| 101 | 69 | cncnpi |  | 
						
							| 102 | 98 100 101 | sylancr |  | 
						
							| 103 | 32 31 34 34 2 37 93 97 102 | limccnp2 |  | 
						
							| 104 | 30 | addlidd |  | 
						
							| 105 | 4 31 | npcand |  | 
						
							| 106 | 105 | mpteq2dva |  | 
						
							| 107 | 3 | feqmptd |  | 
						
							| 108 | 106 107 | eqtr4d |  | 
						
							| 109 | 108 | oveq1d |  | 
						
							| 110 | 103 104 109 | 3eltr3d |  | 
						
							| 111 | 2 1 | cnplimc |  | 
						
							| 112 | 38 29 111 | syl2anc |  | 
						
							| 113 | 3 110 112 | mpbir2and |  | 
						
							| 114 | 113 | ex |  | 
						
							| 115 | 114 | exlimdv |  | 
						
							| 116 |  | eldmg |  | 
						
							| 117 | 116 | ibi |  | 
						
							| 118 | 115 117 | impel |  |