| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvgt0.a |
|
| 2 |
|
dvgt0.b |
|
| 3 |
|
dvgt0.f |
|
| 4 |
|
dvgt0lem.d |
|
| 5 |
|
iccssxr |
|
| 6 |
|
simplrl |
|
| 7 |
5 6
|
sselid |
|
| 8 |
|
simplrr |
|
| 9 |
5 8
|
sselid |
|
| 10 |
|
iccssre |
|
| 11 |
1 2 10
|
syl2anc |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
12 6
|
sseldd |
|
| 14 |
12 8
|
sseldd |
|
| 15 |
|
simpr |
|
| 16 |
13 14 15
|
ltled |
|
| 17 |
|
ubicc2 |
|
| 18 |
7 9 16 17
|
syl3anc |
|
| 19 |
18
|
fvresd |
|
| 20 |
|
lbicc2 |
|
| 21 |
7 9 16 20
|
syl3anc |
|
| 22 |
21
|
fvresd |
|
| 23 |
19 22
|
oveq12d |
|
| 24 |
23
|
oveq1d |
|
| 25 |
|
iccss2 |
|
| 26 |
25
|
ad2antlr |
|
| 27 |
3
|
ad2antrr |
|
| 28 |
|
rescncf |
|
| 29 |
26 27 28
|
sylc |
|
| 30 |
4
|
ad2antrr |
|
| 31 |
1
|
ad2antrr |
|
| 32 |
31
|
rexrd |
|
| 33 |
2
|
ad2antrr |
|
| 34 |
|
elicc2 |
|
| 35 |
31 33 34
|
syl2anc |
|
| 36 |
6 35
|
mpbid |
|
| 37 |
36
|
simp2d |
|
| 38 |
|
iooss1 |
|
| 39 |
32 37 38
|
syl2anc |
|
| 40 |
33
|
rexrd |
|
| 41 |
|
elicc2 |
|
| 42 |
31 33 41
|
syl2anc |
|
| 43 |
8 42
|
mpbid |
|
| 44 |
43
|
simp3d |
|
| 45 |
|
iooss2 |
|
| 46 |
40 44 45
|
syl2anc |
|
| 47 |
39 46
|
sstrd |
|
| 48 |
30 47
|
fssresd |
|
| 49 |
|
ax-resscn |
|
| 50 |
49
|
a1i |
|
| 51 |
|
cncff |
|
| 52 |
3 51
|
syl |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
|
fss |
|
| 55 |
53 49 54
|
sylancl |
|
| 56 |
|
iccssre |
|
| 57 |
13 14 56
|
syl2anc |
|
| 58 |
|
eqid |
|
| 59 |
|
tgioo4 |
|
| 60 |
58 59
|
dvres |
|
| 61 |
50 55 12 57 60
|
syl22anc |
|
| 62 |
|
iccntr |
|
| 63 |
13 14 62
|
syl2anc |
|
| 64 |
63
|
reseq2d |
|
| 65 |
61 64
|
eqtrd |
|
| 66 |
65
|
feq1d |
|
| 67 |
48 66
|
mpbird |
|
| 68 |
67
|
fdmd |
|
| 69 |
13 14 15 29 68
|
mvth |
|
| 70 |
67
|
ffvelcdmda |
|
| 71 |
|
eleq1 |
|
| 72 |
70 71
|
syl5ibcom |
|
| 73 |
72
|
rexlimdva |
|
| 74 |
69 73
|
mpd |
|
| 75 |
24 74
|
eqeltrrd |
|