Metamath Proof Explorer


Theorem dvgt0lem1

Description: Lemma for dvgt0 and dvlt0 . (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses dvgt0.a φA
dvgt0.b φB
dvgt0.f φF:ABcn
dvgt0lem.d φF:ABS
Assertion dvgt0lem1 φXABYABX<YFYFXYXS

Proof

Step Hyp Ref Expression
1 dvgt0.a φA
2 dvgt0.b φB
3 dvgt0.f φF:ABcn
4 dvgt0lem.d φF:ABS
5 iccssxr AB*
6 simplrl φXABYABX<YXAB
7 5 6 sselid φXABYABX<YX*
8 simplrr φXABYABX<YYAB
9 5 8 sselid φXABYABX<YY*
10 iccssre ABAB
11 1 2 10 syl2anc φAB
12 11 ad2antrr φXABYABX<YAB
13 12 6 sseldd φXABYABX<YX
14 12 8 sseldd φXABYABX<YY
15 simpr φXABYABX<YX<Y
16 13 14 15 ltled φXABYABX<YXY
17 ubicc2 X*Y*XYYXY
18 7 9 16 17 syl3anc φXABYABX<YYXY
19 18 fvresd φXABYABX<YFXYY=FY
20 lbicc2 X*Y*XYXXY
21 7 9 16 20 syl3anc φXABYABX<YXXY
22 21 fvresd φXABYABX<YFXYX=FX
23 19 22 oveq12d φXABYABX<YFXYYFXYX=FYFX
24 23 oveq1d φXABYABX<YFXYYFXYXYX=FYFXYX
25 iccss2 XABYABXYAB
26 25 ad2antlr φXABYABX<YXYAB
27 3 ad2antrr φXABYABX<YF:ABcn
28 rescncf XYABF:ABcnFXY:XYcn
29 26 27 28 sylc φXABYABX<YFXY:XYcn
30 4 ad2antrr φXABYABX<YF:ABS
31 1 ad2antrr φXABYABX<YA
32 31 rexrd φXABYABX<YA*
33 2 ad2antrr φXABYABX<YB
34 elicc2 ABXABXAXXB
35 31 33 34 syl2anc φXABYABX<YXABXAXXB
36 6 35 mpbid φXABYABX<YXAXXB
37 36 simp2d φXABYABX<YAX
38 iooss1 A*AXXYAY
39 32 37 38 syl2anc φXABYABX<YXYAY
40 33 rexrd φXABYABX<YB*
41 elicc2 ABYABYAYYB
42 31 33 41 syl2anc φXABYABX<YYABYAYYB
43 8 42 mpbid φXABYABX<YYAYYB
44 43 simp3d φXABYABX<YYB
45 iooss2 B*YBAYAB
46 40 44 45 syl2anc φXABYABX<YAYAB
47 39 46 sstrd φXABYABX<YXYAB
48 30 47 fssresd φXABYABX<YFXY:XYS
49 ax-resscn
50 49 a1i φXABYABX<Y
51 cncff F:ABcnF:AB
52 3 51 syl φF:AB
53 52 ad2antrr φXABYABX<YF:AB
54 fss F:ABF:AB
55 53 49 54 sylancl φXABYABX<YF:AB
56 iccssre XYXY
57 13 14 56 syl2anc φXABYABX<YXY
58 eqid TopOpenfld=TopOpenfld
59 58 tgioo2 topGenran.=TopOpenfld𝑡
60 58 59 dvres F:ABABXYDFXY=FinttopGenran.XY
61 50 55 12 57 60 syl22anc φXABYABX<YDFXY=FinttopGenran.XY
62 iccntr XYinttopGenran.XY=XY
63 13 14 62 syl2anc φXABYABX<YinttopGenran.XY=XY
64 63 reseq2d φXABYABX<YFinttopGenran.XY=FXY
65 61 64 eqtrd φXABYABX<YDFXY=FXY
66 65 feq1d φXABYABX<YFXY:XYSFXY:XYS
67 48 66 mpbird φXABYABX<YFXY:XYS
68 67 fdmd φXABYABX<YdomFXY=XY
69 13 14 15 29 68 mvth φXABYABX<YzXYFXYz=FXYYFXYXYX
70 67 ffvelcdmda φXABYABX<YzXYFXYzS
71 eleq1 FXYz=FXYYFXYXYXFXYzSFXYYFXYXYXS
72 70 71 syl5ibcom φXABYABX<YzXYFXYz=FXYYFXYXYXFXYYFXYXYXS
73 72 rexlimdva φXABYABX<YzXYFXYz=FXYYFXYXYXFXYYFXYXYXS
74 69 73 mpd φXABYABX<YFXYYFXYXYXS
75 24 74 eqeltrrd φXABYABX<YFYFXYXS