Metamath Proof Explorer


Theorem dvh4dimat

Description: There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dvh4dimat.h H=LHypK
dvh4dimat.u U=DVecHKW
dvh4dimat.s ˙=LSSumU
dvh4dimat.a A=LSAtomsU
dvh4dimat.k φKHLWH
dvh4dimat.p φPA
dvh4dimat.q φQA
dvh4dimat.r φRA
Assertion dvh4dimat φsA¬sP˙Q˙R

Proof

Step Hyp Ref Expression
1 dvh4dimat.h H=LHypK
2 dvh4dimat.u U=DVecHKW
3 dvh4dimat.s ˙=LSSumU
4 dvh4dimat.a A=LSAtomsU
5 dvh4dimat.k φKHLWH
6 dvh4dimat.p φPA
7 dvh4dimat.q φQA
8 dvh4dimat.r φRA
9 5 simpld φKHL
10 eqid AtomsK=AtomsK
11 eqid DIsoHKW=DIsoHKW
12 10 1 2 11 4 dihlatat KHLWHPADIsoHKW-1PAtomsK
13 5 6 12 syl2anc φDIsoHKW-1PAtomsK
14 10 1 2 11 4 dihlatat KHLWHQADIsoHKW-1QAtomsK
15 5 7 14 syl2anc φDIsoHKW-1QAtomsK
16 10 1 2 11 4 dihlatat KHLWHRADIsoHKW-1RAtomsK
17 5 8 16 syl2anc φDIsoHKW-1RAtomsK
18 eqid joinK=joinK
19 eqid K=K
20 18 19 10 3dim3 KHLDIsoHKW-1PAtomsKDIsoHKW-1QAtomsKDIsoHKW-1RAtomsKrAtomsK¬rKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1R
21 9 13 15 17 20 syl13anc φrAtomsK¬rKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1R
22 5 adantr φrAtomsKKHLWH
23 1 2 11 4 dih1dimat KHLWHPAPranDIsoHKW
24 5 6 23 syl2anc φPranDIsoHKW
25 1 11 2 3 4 5 24 7 dihsmatrn φP˙QranDIsoHKW
26 25 adantr φrAtomsKP˙QranDIsoHKW
27 8 adantr φrAtomsKRA
28 18 1 11 2 3 4 22 26 27 dihjat4 φrAtomsKP˙Q˙R=DIsoHKWDIsoHKW-1P˙QjoinKDIsoHKW-1R
29 24 adantr φrAtomsKPranDIsoHKW
30 7 adantr φrAtomsKQA
31 18 1 11 2 3 4 22 29 30 dihjat6 φrAtomsKDIsoHKW-1P˙Q=DIsoHKW-1PjoinKDIsoHKW-1Q
32 31 fvoveq1d φrAtomsKDIsoHKWDIsoHKW-1P˙QjoinKDIsoHKW-1R=DIsoHKWDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1R
33 28 32 eqtrd φrAtomsKP˙Q˙R=DIsoHKWDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1R
34 33 sseq2d φrAtomsKDIsoHKWrP˙Q˙RDIsoHKWrDIsoHKWDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1R
35 eqid BaseK=BaseK
36 35 10 atbase rAtomsKrBaseK
37 36 adantl φrAtomsKrBaseK
38 9 hllatd φKLat
39 35 18 10 hlatjcl KHLDIsoHKW-1PAtomsKDIsoHKW-1QAtomsKDIsoHKW-1PjoinKDIsoHKW-1QBaseK
40 9 13 15 39 syl3anc φDIsoHKW-1PjoinKDIsoHKW-1QBaseK
41 35 10 atbase DIsoHKW-1RAtomsKDIsoHKW-1RBaseK
42 17 41 syl φDIsoHKW-1RBaseK
43 35 18 latjcl KLatDIsoHKW-1PjoinKDIsoHKW-1QBaseKDIsoHKW-1RBaseKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1RBaseK
44 38 40 42 43 syl3anc φDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1RBaseK
45 44 adantr φrAtomsKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1RBaseK
46 35 19 1 11 dihord KHLWHrBaseKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1RBaseKDIsoHKWrDIsoHKWDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1RrKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1R
47 22 37 45 46 syl3anc φrAtomsKDIsoHKWrDIsoHKWDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1RrKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1R
48 34 47 bitr2d φrAtomsKrKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1RDIsoHKWrP˙Q˙R
49 48 notbid φrAtomsK¬rKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1R¬DIsoHKWrP˙Q˙R
50 49 rexbidva φrAtomsK¬rKDIsoHKW-1PjoinKDIsoHKW-1QjoinKDIsoHKW-1RrAtomsK¬DIsoHKWrP˙Q˙R
51 21 50 mpbid φrAtomsK¬DIsoHKWrP˙Q˙R
52 10 1 2 11 4 dihatlat KHLWHrAtomsKDIsoHKWrA
53 5 52 sylan φrAtomsKDIsoHKWrA
54 10 1 2 11 4 dihlatat KHLWHsADIsoHKW-1sAtomsK
55 5 54 sylan φsADIsoHKW-1sAtomsK
56 5 adantr φsAKHLWH
57 1 2 11 4 dih1dimat KHLWHsAsranDIsoHKW
58 5 57 sylan φsAsranDIsoHKW
59 1 11 dihcnvid2 KHLWHsranDIsoHKWDIsoHKWDIsoHKW-1s=s
60 56 58 59 syl2anc φsADIsoHKWDIsoHKW-1s=s
61 60 eqcomd φsAs=DIsoHKWDIsoHKW-1s
62 fveq2 r=DIsoHKW-1sDIsoHKWr=DIsoHKWDIsoHKW-1s
63 62 rspceeqv DIsoHKW-1sAtomsKs=DIsoHKWDIsoHKW-1srAtomsKs=DIsoHKWr
64 55 61 63 syl2anc φsArAtomsKs=DIsoHKWr
65 sseq1 s=DIsoHKWrsP˙Q˙RDIsoHKWrP˙Q˙R
66 65 notbid s=DIsoHKWr¬sP˙Q˙R¬DIsoHKWrP˙Q˙R
67 66 adantl φs=DIsoHKWr¬sP˙Q˙R¬DIsoHKWrP˙Q˙R
68 53 64 67 rexxfrd φsA¬sP˙Q˙RrAtomsK¬DIsoHKWrP˙Q˙R
69 51 68 mpbird φsA¬sP˙Q˙R