Metamath Proof Explorer


Theorem dvlog

Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Hypothesis logcn.d D=−∞0
Assertion dvlog DlogD=xD1x

Proof

Step Hyp Ref Expression
1 logcn.d D=−∞0
2 eqid TopOpenfld=TopOpenfld
3 2 cnfldtopon TopOpenfldTopOn
4 3 toponrestid TopOpenfld=TopOpenfld𝑡
5 cnelprrecn
6 5 a1i
7 1 logdmopn DTopOpenfld
8 7 a1i DTopOpenfld
9 logf1o log:01-1 ontoranlog
10 f1of1 log:01-1 ontoranloglog:01-1ranlog
11 9 10 ax-mp log:01-1ranlog
12 1 logdmss D0
13 f1ores log:01-1ranlogD0logD:D1-1 ontologD
14 11 12 13 mp2an logD:D1-1 ontologD
15 f1ocnv logD:D1-1 ontologDlogD-1:logD1-1 ontoD
16 14 15 ax-mp logD-1:logD1-1 ontoD
17 df-log log=exp-1ππ-1
18 17 reseq1i logD=exp-1ππ-1D
19 18 cnveqi logD-1=exp-1ππ-1D-1
20 eff exp:
21 cnvimass -1ππdom
22 imf :
23 22 fdmi dom=
24 21 23 sseqtri -1ππ
25 fssres exp:-1ππexp-1ππ:-1ππ
26 20 24 25 mp2an exp-1ππ:-1ππ
27 ffun exp-1ππ:-1ππFunexp-1ππ
28 funcnvres2 Funexp-1ππexp-1ππ-1D-1=exp-1ππexp-1ππ-1D
29 26 27 28 mp2b exp-1ππ-1D-1=exp-1ππexp-1ππ-1D
30 cnvimass exp-1ππ-1Ddomexp-1ππ
31 26 fdmi domexp-1ππ=-1ππ
32 30 31 sseqtri exp-1ππ-1D-1ππ
33 resabs1 exp-1ππ-1D-1ππexp-1ππexp-1ππ-1D=expexp-1ππ-1D
34 32 33 ax-mp exp-1ππexp-1ππ-1D=expexp-1ππ-1D
35 19 29 34 3eqtri logD-1=expexp-1ππ-1D
36 17 imaeq1i logD=exp-1ππ-1D
37 36 reseq2i explogD=expexp-1ππ-1D
38 35 37 eqtr4i logD-1=explogD
39 f1oeq1 logD-1=explogDlogD-1:logD1-1 ontoDexplogD:logD1-1 ontoD
40 38 39 ax-mp logD-1:logD1-1 ontoDexplogD:logD1-1 ontoD
41 16 40 mpbi explogD:logD1-1 ontoD
42 41 a1i explogD:logD1-1 ontoD
43 38 cnveqi logD-1-1=explogD-1
44 relres RellogD
45 dfrel2 RellogDlogD-1-1=logD
46 44 45 mpbi logD-1-1=logD
47 43 46 eqtr3i explogD-1=logD
48 f1of logD:D1-1 ontologDlogD:DlogD
49 14 48 mp1i logD:DlogD
50 imassrn logDranlog
51 logrncn xranlogx
52 51 ssriv ranlog
53 50 52 sstri logD
54 1 logcn logD:Dcn
55 cncfcdm logDlogD:DcnlogD:DcnlogDlogD:DlogD
56 53 54 55 mp2an logD:DcnlogDlogD:DlogD
57 49 56 sylibr logD:DcnlogD
58 47 57 eqeltrid explogD-1:DcnlogD
59 ssid
60 2 4 dvres exp:logDDexplogD=expintTopOpenfldlogD
61 59 20 59 53 60 mp4an DexplogD=expintTopOpenfldlogD
62 dvef Dexp=exp
63 2 cnfldtop TopOpenfldTop
64 1 dvloglem logDTopOpenfld
65 isopn3i TopOpenfldToplogDTopOpenfldintTopOpenfldlogD=logD
66 63 64 65 mp2an intTopOpenfldlogD=logD
67 62 66 reseq12i expintTopOpenfldlogD=explogD
68 61 67 eqtri DexplogD=explogD
69 68 dmeqi domexplogD=domexplogD
70 dmres domexplogD=logDdomexp
71 20 fdmi domexp=
72 53 71 sseqtrri logDdomexp
73 df-ss logDdomexplogDdomexp=logD
74 72 73 mpbi logDdomexp=logD
75 69 70 74 3eqtri domexplogD=logD
76 75 a1i domexplogD=logD
77 neirr ¬00
78 resss expintTopOpenfldlogDDexp
79 61 78 eqsstri DexplogDDexp
80 79 62 sseqtri DexplogDexp
81 80 rnssi ranexplogDranexp
82 eff2 exp:0
83 frn exp:0ranexp0
84 82 83 ax-mp ranexp0
85 81 84 sstri ranexplogD0
86 85 sseli 0ranexplogD00
87 eldifsn 00000
88 86 87 sylib 0ranexplogD000
89 88 simprd 0ranexplogD00
90 77 89 mto ¬0ranexplogD
91 90 a1i ¬0ranexplogD
92 2 4 6 8 42 58 76 91 dvcnv DexplogD-1=xD1explogDexplogD-1x
93 92 mptru DexplogD-1=xD1explogDexplogD-1x
94 47 oveq2i DexplogD-1=DlogD
95 68 fveq1i explogDexplogD-1x=explogDexplogD-1x
96 f1ocnvfv2 explogD:logD1-1 ontoDxDexplogDexplogD-1x=x
97 41 96 mpan xDexplogDexplogD-1x=x
98 95 97 eqtrid xDexplogDexplogD-1x=x
99 98 oveq2d xD1explogDexplogD-1x=1x
100 99 mpteq2ia xD1explogDexplogD-1x=xD1x
101 93 94 100 3eqtr3i DlogD=xD1x