Metamath Proof Explorer


Theorem dvtan

Description: Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018)

Ref Expression
Assertion dvtan Dtan=xdomtancosx2

Proof

Step Hyp Ref Expression
1 df-tan tan=xcos-10sinxcosx
2 cnvimass cos-10domcos
3 cosf cos:
4 3 fdmi domcos=
5 2 4 sseqtri cos-10
6 5 sseli xcos-10x
7 6 sincld xcos-10sinx
8 6 coscld xcos-10cosx
9 ffn cos:cosFn
10 elpreima cosFnxcos-10xcosx0
11 3 9 10 mp2b xcos-10xcosx0
12 eldifsni cosx0cosx0
13 12 adantl xcosx0cosx0
14 11 13 sylbi xcos-10cosx0
15 7 8 14 divrecd xcos-10sinxcosx=sinx1cosx
16 15 mpteq2ia xcos-10sinxcosx=xcos-10sinx1cosx
17 1 16 eqtri tan=xcos-10sinx1cosx
18 17 oveq2i Dtan=dxcos-10sinx1cosxdx
19 cnelprrecn
20 19 a1i
21 difss 0
22 imass2 0cos-10cos-1
23 21 22 ax-mp cos-10cos-1
24 fimacnv cos:cos-1=
25 3 24 ax-mp cos-1=
26 23 25 sseqtri cos-10
27 26 sseli xcos-10x
28 27 sincld xcos-10sinx
29 28 adantl xcos-10sinx
30 8 adantl xcos-10cosx
31 sincl xsinx
32 31 adantl xsinx
33 coscl xcosx
34 33 adantl xcosx
35 dvsin Dsin=cos
36 sinf sin:
37 36 a1i sin:
38 37 feqmptd sin=xsinx
39 38 oveq2d Dsin=dxsinxdx
40 3 a1i cos:
41 40 feqmptd cos=xcosx
42 35 39 41 3eqtr3a dxsinxdx=xcosx
43 26 a1i cos-10
44 eqid TopOpenfld=TopOpenfld
45 44 cnfldtopon TopOpenfldTopOn
46 45 toponrestid TopOpenfld=TopOpenfld𝑡
47 dvtanlem cos-10TopOpenfld
48 47 a1i cos-10TopOpenfld
49 20 32 34 42 43 46 44 48 dvmptres dxcos-10sinxdx=xcos-10cosx
50 8 14 reccld xcos-101cosx
51 50 adantl xcos-101cosx
52 ovexd xcos-101cosx2sinxV
53 11 simprbi xcos-10cosx0
54 53 adantl xcos-10cosx0
55 29 negcld xcos-10sinx
56 eldifi y0y
57 eldifsni y0y0
58 56 57 reccld y01y
59 58 adantl y01y
60 negex 1y2V
61 60 a1i y01y2V
62 32 negcld xsinx
63 41 oveq2d Dcos=dxcosxdx
64 dvcos Dcos=xsinx
65 63 64 eqtr3di dxcosxdx=xsinx
66 20 34 62 65 43 46 44 48 dvmptres dxcos-10cosxdx=xcos-10sinx
67 ax-1cn 1
68 dvrec 1dy01ydy=y01y2
69 67 68 mp1i dy01ydy=y01y2
70 oveq2 y=cosx1y=1cosx
71 oveq1 y=cosxy2=cosx2
72 71 oveq2d y=cosx1y2=1cosx2
73 72 negeqd y=cosx1y2=1cosx2
74 20 20 54 55 59 61 66 69 70 73 dvmptco dxcos-101cosxdx=xcos-101cosx2sinx
75 20 29 30 49 51 52 74 dvmptmul dxcos-10sinx1cosxdx=xcos-10cosx1cosx+1cosx2sinxsinx
76 75 mptru dxcos-10sinx1cosxdx=xcos-10cosx1cosx+1cosx2sinxsinx
77 ovex sinxcosxV
78 77 1 dmmpti domtan=cos-10
79 78 eqcomi cos-10=domtan
80 8 sqcld xcos-10cosx2
81 7 sqcld xcos-10sinx2
82 sqne0 cosxcosx20cosx0
83 8 82 syl xcos-10cosx20cosx0
84 14 83 mpbird xcos-10cosx20
85 80 81 80 84 divdird xcos-10cosx2+sinx2cosx2=cosx2cosx2+sinx2cosx2
86 80 81 addcomd xcos-10cosx2+sinx2=sinx2+cosx2
87 sincossq xsinx2+cosx2=1
88 6 87 syl xcos-10sinx2+cosx2=1
89 86 88 eqtrd xcos-10cosx2+sinx2=1
90 89 oveq1d xcos-10cosx2+sinx2cosx2=1cosx2
91 85 90 eqtr3d xcos-10cosx2cosx2+sinx2cosx2=1cosx2
92 8 14 recidd xcos-10cosx1cosx=1
93 80 84 dividd xcos-10cosx2cosx2=1
94 92 93 eqtr4d xcos-10cosx1cosx=cosx2cosx2
95 7 7 80 84 div23d xcos-10sinxsinxcosx2=sinxcosx2sinx
96 7 sqvald xcos-10sinx2=sinxsinx
97 96 oveq1d xcos-10sinx2cosx2=sinxsinxcosx2
98 80 84 reccld xcos-101cosx2
99 98 7 mul2negd xcos-101cosx2sinx=1cosx2sinx
100 7 80 84 divrec2d xcos-10sinxcosx2=1cosx2sinx
101 99 100 eqtr4d xcos-101cosx2sinx=sinxcosx2
102 101 oveq1d xcos-101cosx2sinxsinx=sinxcosx2sinx
103 95 97 102 3eqtr4rd xcos-101cosx2sinxsinx=sinx2cosx2
104 94 103 oveq12d xcos-10cosx1cosx+1cosx2sinxsinx=cosx2cosx2+sinx2cosx2
105 2nn0 20
106 expneg cosx20cosx2=1cosx2
107 8 105 106 sylancl xcos-10cosx2=1cosx2
108 91 104 107 3eqtr4d xcos-10cosx1cosx+1cosx2sinxsinx=cosx2
109 108 rgen xcos-10cosx1cosx+1cosx2sinxsinx=cosx2
110 mpteq12 cos-10=domtanxcos-10cosx1cosx+1cosx2sinxsinx=cosx2xcos-10cosx1cosx+1cosx2sinxsinx=xdomtancosx2
111 79 109 110 mp2an xcos-10cosx1cosx+1cosx2sinxsinx=xdomtancosx2
112 18 76 111 3eqtri Dtan=xdomtancosx2