Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
dvtan
Next ⟩
itg2addnclem
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvtan
Description:
Derivative of tangent.
(Contributed by
Brendan Leahy
, 7-Aug-2018)
Ref
Expression
Assertion
dvtan
⊢
ℂ
D
tan
=
x
∈
dom
tan
⟼
cos
x
−
2
Proof
Step
Hyp
Ref
Expression
1
df-tan
⊢
tan
=
x
∈
cos
-1
ℂ
∖
0
⟼
sin
x
cos
x
2
cnvimass
⊢
cos
-1
ℂ
∖
0
⊆
dom
cos
3
cosf
⊢
cos
:
ℂ
⟶
ℂ
4
3
fdmi
⊢
dom
cos
=
ℂ
5
2
4
sseqtri
⊢
cos
-1
ℂ
∖
0
⊆
ℂ
6
5
sseli
⊢
x
∈
cos
-1
ℂ
∖
0
→
x
∈
ℂ
7
6
sincld
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
∈
ℂ
8
6
coscld
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
∈
ℂ
9
ffn
⊢
cos
:
ℂ
⟶
ℂ
→
cos
Fn
ℂ
10
elpreima
⊢
cos
Fn
ℂ
→
x
∈
cos
-1
ℂ
∖
0
↔
x
∈
ℂ
∧
cos
x
∈
ℂ
∖
0
11
3
9
10
mp2b
⊢
x
∈
cos
-1
ℂ
∖
0
↔
x
∈
ℂ
∧
cos
x
∈
ℂ
∖
0
12
eldifsni
⊢
cos
x
∈
ℂ
∖
0
→
cos
x
≠
0
13
12
adantl
⊢
x
∈
ℂ
∧
cos
x
∈
ℂ
∖
0
→
cos
x
≠
0
14
11
13
sylbi
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
≠
0
15
7
8
14
divrecd
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
cos
x
=
sin
x
1
cos
x
16
15
mpteq2ia
⊢
x
∈
cos
-1
ℂ
∖
0
⟼
sin
x
cos
x
=
x
∈
cos
-1
ℂ
∖
0
⟼
sin
x
1
cos
x
17
1
16
eqtri
⊢
tan
=
x
∈
cos
-1
ℂ
∖
0
⟼
sin
x
1
cos
x
18
17
oveq2i
⊢
ℂ
D
tan
=
d
x
∈
cos
-1
ℂ
∖
0
sin
x
1
cos
x
d
ℂ
x
19
cnelprrecn
⊢
ℂ
∈
ℝ
ℂ
20
19
a1i
⊢
⊤
→
ℂ
∈
ℝ
ℂ
21
difss
⊢
ℂ
∖
0
⊆
ℂ
22
imass2
⊢
ℂ
∖
0
⊆
ℂ
→
cos
-1
ℂ
∖
0
⊆
cos
-1
ℂ
23
21
22
ax-mp
⊢
cos
-1
ℂ
∖
0
⊆
cos
-1
ℂ
24
fimacnv
⊢
cos
:
ℂ
⟶
ℂ
→
cos
-1
ℂ
=
ℂ
25
3
24
ax-mp
⊢
cos
-1
ℂ
=
ℂ
26
23
25
sseqtri
⊢
cos
-1
ℂ
∖
0
⊆
ℂ
27
26
sseli
⊢
x
∈
cos
-1
ℂ
∖
0
→
x
∈
ℂ
28
27
sincld
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
∈
ℂ
29
28
adantl
⊢
⊤
∧
x
∈
cos
-1
ℂ
∖
0
→
sin
x
∈
ℂ
30
8
adantl
⊢
⊤
∧
x
∈
cos
-1
ℂ
∖
0
→
cos
x
∈
ℂ
31
sincl
⊢
x
∈
ℂ
→
sin
x
∈
ℂ
32
31
adantl
⊢
⊤
∧
x
∈
ℂ
→
sin
x
∈
ℂ
33
coscl
⊢
x
∈
ℂ
→
cos
x
∈
ℂ
34
33
adantl
⊢
⊤
∧
x
∈
ℂ
→
cos
x
∈
ℂ
35
dvsin
⊢
ℂ
D
sin
=
cos
36
sinf
⊢
sin
:
ℂ
⟶
ℂ
37
36
a1i
⊢
⊤
→
sin
:
ℂ
⟶
ℂ
38
37
feqmptd
⊢
⊤
→
sin
=
x
∈
ℂ
⟼
sin
x
39
38
oveq2d
⊢
⊤
→
ℂ
D
sin
=
d
x
∈
ℂ
sin
x
d
ℂ
x
40
3
a1i
⊢
⊤
→
cos
:
ℂ
⟶
ℂ
41
40
feqmptd
⊢
⊤
→
cos
=
x
∈
ℂ
⟼
cos
x
42
35
39
41
3eqtr3a
⊢
⊤
→
d
x
∈
ℂ
sin
x
d
ℂ
x
=
x
∈
ℂ
⟼
cos
x
43
26
a1i
⊢
⊤
→
cos
-1
ℂ
∖
0
⊆
ℂ
44
eqid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
45
44
cnfldtopon
⊢
TopOpen
ℂ
fld
∈
TopOn
ℂ
46
45
toponrestid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
↾
𝑡
ℂ
47
dvtanlem
⊢
cos
-1
ℂ
∖
0
∈
TopOpen
ℂ
fld
48
47
a1i
⊢
⊤
→
cos
-1
ℂ
∖
0
∈
TopOpen
ℂ
fld
49
20
32
34
42
43
46
44
48
dvmptres
⊢
⊤
→
d
x
∈
cos
-1
ℂ
∖
0
sin
x
d
ℂ
x
=
x
∈
cos
-1
ℂ
∖
0
⟼
cos
x
50
8
14
reccld
⊢
x
∈
cos
-1
ℂ
∖
0
→
1
cos
x
∈
ℂ
51
50
adantl
⊢
⊤
∧
x
∈
cos
-1
ℂ
∖
0
→
1
cos
x
∈
ℂ
52
ovexd
⊢
⊤
∧
x
∈
cos
-1
ℂ
∖
0
→
−
1
cos
x
2
−
sin
x
∈
V
53
11
simprbi
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
∈
ℂ
∖
0
54
53
adantl
⊢
⊤
∧
x
∈
cos
-1
ℂ
∖
0
→
cos
x
∈
ℂ
∖
0
55
29
negcld
⊢
⊤
∧
x
∈
cos
-1
ℂ
∖
0
→
−
sin
x
∈
ℂ
56
eldifi
⊢
y
∈
ℂ
∖
0
→
y
∈
ℂ
57
eldifsni
⊢
y
∈
ℂ
∖
0
→
y
≠
0
58
56
57
reccld
⊢
y
∈
ℂ
∖
0
→
1
y
∈
ℂ
59
58
adantl
⊢
⊤
∧
y
∈
ℂ
∖
0
→
1
y
∈
ℂ
60
negex
⊢
−
1
y
2
∈
V
61
60
a1i
⊢
⊤
∧
y
∈
ℂ
∖
0
→
−
1
y
2
∈
V
62
32
negcld
⊢
⊤
∧
x
∈
ℂ
→
−
sin
x
∈
ℂ
63
41
oveq2d
⊢
⊤
→
ℂ
D
cos
=
d
x
∈
ℂ
cos
x
d
ℂ
x
64
dvcos
⊢
ℂ
D
cos
=
x
∈
ℂ
⟼
−
sin
x
65
63
64
eqtr3di
⊢
⊤
→
d
x
∈
ℂ
cos
x
d
ℂ
x
=
x
∈
ℂ
⟼
−
sin
x
66
20
34
62
65
43
46
44
48
dvmptres
⊢
⊤
→
d
x
∈
cos
-1
ℂ
∖
0
cos
x
d
ℂ
x
=
x
∈
cos
-1
ℂ
∖
0
⟼
−
sin
x
67
ax-1cn
⊢
1
∈
ℂ
68
dvrec
⊢
1
∈
ℂ
→
d
y
∈
ℂ
∖
0
1
y
d
ℂ
y
=
y
∈
ℂ
∖
0
⟼
−
1
y
2
69
67
68
mp1i
⊢
⊤
→
d
y
∈
ℂ
∖
0
1
y
d
ℂ
y
=
y
∈
ℂ
∖
0
⟼
−
1
y
2
70
oveq2
⊢
y
=
cos
x
→
1
y
=
1
cos
x
71
oveq1
⊢
y
=
cos
x
→
y
2
=
cos
x
2
72
71
oveq2d
⊢
y
=
cos
x
→
1
y
2
=
1
cos
x
2
73
72
negeqd
⊢
y
=
cos
x
→
−
1
y
2
=
−
1
cos
x
2
74
20
20
54
55
59
61
66
69
70
73
dvmptco
⊢
⊤
→
d
x
∈
cos
-1
ℂ
∖
0
1
cos
x
d
ℂ
x
=
x
∈
cos
-1
ℂ
∖
0
⟼
−
1
cos
x
2
−
sin
x
75
20
29
30
49
51
52
74
dvmptmul
⊢
⊤
→
d
x
∈
cos
-1
ℂ
∖
0
sin
x
1
cos
x
d
ℂ
x
=
x
∈
cos
-1
ℂ
∖
0
⟼
cos
x
1
cos
x
+
−
1
cos
x
2
−
sin
x
sin
x
76
75
mptru
⊢
d
x
∈
cos
-1
ℂ
∖
0
sin
x
1
cos
x
d
ℂ
x
=
x
∈
cos
-1
ℂ
∖
0
⟼
cos
x
1
cos
x
+
−
1
cos
x
2
−
sin
x
sin
x
77
ovex
⊢
sin
x
cos
x
∈
V
78
77
1
dmmpti
⊢
dom
tan
=
cos
-1
ℂ
∖
0
79
78
eqcomi
⊢
cos
-1
ℂ
∖
0
=
dom
tan
80
8
sqcld
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
∈
ℂ
81
7
sqcld
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
2
∈
ℂ
82
sqne0
⊢
cos
x
∈
ℂ
→
cos
x
2
≠
0
↔
cos
x
≠
0
83
8
82
syl
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
≠
0
↔
cos
x
≠
0
84
14
83
mpbird
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
≠
0
85
80
81
80
84
divdird
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
+
sin
x
2
cos
x
2
=
cos
x
2
cos
x
2
+
sin
x
2
cos
x
2
86
80
81
addcomd
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
+
sin
x
2
=
sin
x
2
+
cos
x
2
87
sincossq
⊢
x
∈
ℂ
→
sin
x
2
+
cos
x
2
=
1
88
6
87
syl
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
2
+
cos
x
2
=
1
89
86
88
eqtrd
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
+
sin
x
2
=
1
90
89
oveq1d
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
+
sin
x
2
cos
x
2
=
1
cos
x
2
91
85
90
eqtr3d
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
cos
x
2
+
sin
x
2
cos
x
2
=
1
cos
x
2
92
8
14
recidd
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
1
cos
x
=
1
93
80
84
dividd
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
2
cos
x
2
=
1
94
92
93
eqtr4d
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
1
cos
x
=
cos
x
2
cos
x
2
95
7
7
80
84
div23d
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
sin
x
cos
x
2
=
sin
x
cos
x
2
sin
x
96
7
sqvald
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
2
=
sin
x
sin
x
97
96
oveq1d
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
2
cos
x
2
=
sin
x
sin
x
cos
x
2
98
80
84
reccld
⊢
x
∈
cos
-1
ℂ
∖
0
→
1
cos
x
2
∈
ℂ
99
98
7
mul2negd
⊢
x
∈
cos
-1
ℂ
∖
0
→
−
1
cos
x
2
−
sin
x
=
1
cos
x
2
sin
x
100
7
80
84
divrec2d
⊢
x
∈
cos
-1
ℂ
∖
0
→
sin
x
cos
x
2
=
1
cos
x
2
sin
x
101
99
100
eqtr4d
⊢
x
∈
cos
-1
ℂ
∖
0
→
−
1
cos
x
2
−
sin
x
=
sin
x
cos
x
2
102
101
oveq1d
⊢
x
∈
cos
-1
ℂ
∖
0
→
−
1
cos
x
2
−
sin
x
sin
x
=
sin
x
cos
x
2
sin
x
103
95
97
102
3eqtr4rd
⊢
x
∈
cos
-1
ℂ
∖
0
→
−
1
cos
x
2
−
sin
x
sin
x
=
sin
x
2
cos
x
2
104
94
103
oveq12d
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
1
cos
x
+
−
1
cos
x
2
−
sin
x
sin
x
=
cos
x
2
cos
x
2
+
sin
x
2
cos
x
2
105
2nn0
⊢
2
∈
ℕ
0
106
expneg
⊢
cos
x
∈
ℂ
∧
2
∈
ℕ
0
→
cos
x
−
2
=
1
cos
x
2
107
8
105
106
sylancl
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
−
2
=
1
cos
x
2
108
91
104
107
3eqtr4d
⊢
x
∈
cos
-1
ℂ
∖
0
→
cos
x
1
cos
x
+
−
1
cos
x
2
−
sin
x
sin
x
=
cos
x
−
2
109
108
rgen
⊢
∀
x
∈
cos
-1
ℂ
∖
0
cos
x
1
cos
x
+
−
1
cos
x
2
−
sin
x
sin
x
=
cos
x
−
2
110
mpteq12
⊢
cos
-1
ℂ
∖
0
=
dom
tan
∧
∀
x
∈
cos
-1
ℂ
∖
0
cos
x
1
cos
x
+
−
1
cos
x
2
−
sin
x
sin
x
=
cos
x
−
2
→
x
∈
cos
-1
ℂ
∖
0
⟼
cos
x
1
cos
x
+
−
1
cos
x
2
−
sin
x
sin
x
=
x
∈
dom
tan
⟼
cos
x
−
2
111
79
109
110
mp2an
⊢
x
∈
cos
-1
ℂ
∖
0
⟼
cos
x
1
cos
x
+
−
1
cos
x
2
−
sin
x
sin
x
=
x
∈
dom
tan
⟼
cos
x
−
2
112
18
76
111
3eqtri
⊢
ℂ
D
tan
=
x
∈
dom
tan
⟼
cos
x
−
2