Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|
2 |
|
dya2ioc.1 |
|
3 |
|
dya2ioc.2 |
|
4 |
|
dya2iocnrect.1 |
|
5 |
4
|
eleq2i |
|
6 |
|
eqid |
|
7 |
|
vex |
|
8 |
|
vex |
|
9 |
7 8
|
xpex |
|
10 |
6 9
|
elrnmpo |
|
11 |
5 10
|
sylbb |
|
12 |
11
|
3ad2ant2 |
|
13 |
|
simp1 |
|
14 |
|
simp3 |
|
15 |
12 13 14
|
jca32 |
|
16 |
|
r19.41vv |
|
17 |
16
|
biimpri |
|
18 |
|
simprl |
|
19 |
|
simpl |
|
20 |
|
simprr |
|
21 |
20 19
|
eleqtrd |
|
22 |
18 19 21
|
3jca |
|
23 |
|
simpr |
|
24 |
|
xp1st |
|
25 |
24
|
3ad2ant1 |
|
26 |
25
|
adantl |
|
27 |
|
simpll |
|
28 |
|
xp1st |
|
29 |
28
|
3ad2ant3 |
|
30 |
29
|
adantl |
|
31 |
1 2
|
dya2icoseg2 |
|
32 |
26 27 30 31
|
syl3anc |
|
33 |
|
xp2nd |
|
34 |
33
|
3ad2ant1 |
|
35 |
34
|
adantl |
|
36 |
|
simplr |
|
37 |
|
xp2nd |
|
38 |
37
|
3ad2ant3 |
|
39 |
38
|
adantl |
|
40 |
1 2
|
dya2icoseg2 |
|
41 |
35 36 39 40
|
syl3anc |
|
42 |
|
reeanv |
|
43 |
32 41 42
|
sylanbrc |
|
44 |
|
eqid |
|
45 |
|
xpeq1 |
|
46 |
45
|
eqeq2d |
|
47 |
|
xpeq2 |
|
48 |
47
|
eqeq2d |
|
49 |
46 48
|
rspc2ev |
|
50 |
44 49
|
mp3an3 |
|
51 |
|
vex |
|
52 |
|
vex |
|
53 |
51 52
|
xpex |
|
54 |
3 53
|
elrnmpo |
|
55 |
50 54
|
sylibr |
|
56 |
55
|
ad2antrl |
|
57 |
|
xpss |
|
58 |
|
simpl1 |
|
59 |
57 58
|
sselid |
|
60 |
|
simprrl |
|
61 |
60
|
simpld |
|
62 |
|
simprrr |
|
63 |
62
|
simpld |
|
64 |
|
elxp7 |
|
65 |
64
|
biimpri |
|
66 |
59 61 63 65
|
syl12anc |
|
67 |
60
|
simprd |
|
68 |
62
|
simprd |
|
69 |
|
xpss12 |
|
70 |
67 68 69
|
syl2anc |
|
71 |
|
simpl2 |
|
72 |
70 71
|
sseqtrrd |
|
73 |
|
eleq2 |
|
74 |
|
sseq1 |
|
75 |
73 74
|
anbi12d |
|
76 |
75
|
rspcev |
|
77 |
56 66 72 76
|
syl12anc |
|
78 |
77
|
exp32 |
|
79 |
78
|
rexlimdvv |
|
80 |
23 43 79
|
sylc |
|
81 |
22 80
|
sylan2 |
|
82 |
81
|
ex |
|
83 |
82
|
rexlimivv |
|
84 |
15 17 83
|
3syl |
|