Metamath Proof Explorer


Theorem dya2iocnrect

Description: For any point of an open rectangle in ( RR X. RR ) , there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2ioc.2 R=uranI,vranIu×v
dya2iocnrect.1 B=raneran.,fran.e×f
Assertion dya2iocnrect X2ABXAbranRXbbA

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2ioc.2 R=uranI,vranIu×v
4 dya2iocnrect.1 B=raneran.,fran.e×f
5 4 eleq2i ABAraneran.,fran.e×f
6 eqid eran.,fran.e×f=eran.,fran.e×f
7 vex eV
8 vex fV
9 7 8 xpex e×fV
10 6 9 elrnmpo Araneran.,fran.e×feran.fran.A=e×f
11 5 10 sylbb ABeran.fran.A=e×f
12 11 3ad2ant2 X2ABXAeran.fran.A=e×f
13 simp1 X2ABXAX2
14 simp3 X2ABXAXA
15 12 13 14 jca32 X2ABXAeran.fran.A=e×fX2XA
16 r19.41vv eran.fran.A=e×fX2XAeran.fran.A=e×fX2XA
17 16 biimpri eran.fran.A=e×fX2XAeran.fran.A=e×fX2XA
18 simprl A=e×fX2XAX2
19 simpl A=e×fX2XAA=e×f
20 simprr A=e×fX2XAXA
21 20 19 eleqtrd A=e×fX2XAXe×f
22 18 19 21 3jca A=e×fX2XAX2A=e×fXe×f
23 simpr eran.fran.X2A=e×fXe×fX2A=e×fXe×f
24 xp1st X21stX
25 24 3ad2ant1 X2A=e×fXe×f1stX
26 25 adantl eran.fran.X2A=e×fXe×f1stX
27 simpll eran.fran.X2A=e×fXe×feran.
28 xp1st Xe×f1stXe
29 28 3ad2ant3 X2A=e×fXe×f1stXe
30 29 adantl eran.fran.X2A=e×fXe×f1stXe
31 1 2 dya2icoseg2 1stXeran.1stXesranI1stXsse
32 26 27 30 31 syl3anc eran.fran.X2A=e×fXe×fsranI1stXsse
33 xp2nd X22ndX
34 33 3ad2ant1 X2A=e×fXe×f2ndX
35 34 adantl eran.fran.X2A=e×fXe×f2ndX
36 simplr eran.fran.X2A=e×fXe×ffran.
37 xp2nd Xe×f2ndXf
38 37 3ad2ant3 X2A=e×fXe×f2ndXf
39 38 adantl eran.fran.X2A=e×fXe×f2ndXf
40 1 2 dya2icoseg2 2ndXfran.2ndXftranI2ndXttf
41 35 36 39 40 syl3anc eran.fran.X2A=e×fXe×ftranI2ndXttf
42 reeanv sranItranI1stXsse2ndXttfsranI1stXssetranI2ndXttf
43 32 41 42 sylanbrc eran.fran.X2A=e×fXe×fsranItranI1stXsse2ndXttf
44 eqid s×t=s×t
45 xpeq1 u=su×v=s×v
46 45 eqeq2d u=ss×t=u×vs×t=s×v
47 xpeq2 v=ts×v=s×t
48 47 eqeq2d v=ts×t=s×vs×t=s×t
49 46 48 rspc2ev sranItranIs×t=s×turanIvranIs×t=u×v
50 44 49 mp3an3 sranItranIuranIvranIs×t=u×v
51 vex uV
52 vex vV
53 51 52 xpex u×vV
54 3 53 elrnmpo s×tranRuranIvranIs×t=u×v
55 50 54 sylibr sranItranIs×tranR
56 55 ad2antrl X2A=e×fXe×fsranItranI1stXsse2ndXttfs×tranR
57 xpss 2V×V
58 simpl1 X2A=e×fXe×fsranItranI1stXsse2ndXttfX2
59 57 58 sselid X2A=e×fXe×fsranItranI1stXsse2ndXttfXV×V
60 simprrl X2A=e×fXe×fsranItranI1stXsse2ndXttf1stXsse
61 60 simpld X2A=e×fXe×fsranItranI1stXsse2ndXttf1stXs
62 simprrr X2A=e×fXe×fsranItranI1stXsse2ndXttf2ndXttf
63 62 simpld X2A=e×fXe×fsranItranI1stXsse2ndXttf2ndXt
64 elxp7 Xs×tXV×V1stXs2ndXt
65 64 biimpri XV×V1stXs2ndXtXs×t
66 59 61 63 65 syl12anc X2A=e×fXe×fsranItranI1stXsse2ndXttfXs×t
67 60 simprd X2A=e×fXe×fsranItranI1stXsse2ndXttfse
68 62 simprd X2A=e×fXe×fsranItranI1stXsse2ndXttftf
69 xpss12 setfs×te×f
70 67 68 69 syl2anc X2A=e×fXe×fsranItranI1stXsse2ndXttfs×te×f
71 simpl2 X2A=e×fXe×fsranItranI1stXsse2ndXttfA=e×f
72 70 71 sseqtrrd X2A=e×fXe×fsranItranI1stXsse2ndXttfs×tA
73 eleq2 b=s×tXbXs×t
74 sseq1 b=s×tbAs×tA
75 73 74 anbi12d b=s×tXbbAXs×ts×tA
76 75 rspcev s×tranRXs×ts×tAbranRXbbA
77 56 66 72 76 syl12anc X2A=e×fXe×fsranItranI1stXsse2ndXttfbranRXbbA
78 77 exp32 X2A=e×fXe×fsranItranI1stXsse2ndXttfbranRXbbA
79 78 rexlimdvv X2A=e×fXe×fsranItranI1stXsse2ndXttfbranRXbbA
80 23 43 79 sylc eran.fran.X2A=e×fXe×fbranRXbbA
81 22 80 sylan2 eran.fran.A=e×fX2XAbranRXbbA
82 81 ex eran.fran.A=e×fX2XAbranRXbbA
83 82 rexlimivv eran.fran.A=e×fX2XAbranRXbbA
84 15 17 83 3syl X2ABXAbranRXbbA