Metamath Proof Explorer


Theorem efgred

Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgred AdomSBdomSSA=SBA0=B0

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 fviss IWordI×2𝑜WordI×2𝑜
8 1 7 eqsstri WWordI×2𝑜
9 1 2 3 4 5 6 efgsf S:tWordW|t0Dk1..^ttkranTtk1W
10 9 fdmi domS=tWordW|t0Dk1..^ttkranTtk1
11 10 feq2i S:domSWS:tWordW|t0Dk1..^ttkranTtk1W
12 9 11 mpbir S:domSW
13 12 ffvelcdmi AdomSSAW
14 13 adantr AdomSBdomSSAW
15 8 14 sselid AdomSBdomSSAWordI×2𝑜
16 lencl SAWordI×2𝑜SA0
17 15 16 syl AdomSBdomSSA0
18 peano2nn0 SA0SA+10
19 17 18 syl AdomSBdomSSA+10
20 breq2 c=0Sa<cSa<0
21 20 imbi1d c=0Sa<cSa=Sba0=b0Sa<0Sa=Sba0=b0
22 21 2ralbidv c=0adomSbdomSSa<cSa=Sba0=b0adomSbdomSSa<0Sa=Sba0=b0
23 breq2 c=iSa<cSa<i
24 23 imbi1d c=iSa<cSa=Sba0=b0Sa<iSa=Sba0=b0
25 24 2ralbidv c=iadomSbdomSSa<cSa=Sba0=b0adomSbdomSSa<iSa=Sba0=b0
26 breq2 c=i+1Sa<cSa<i+1
27 26 imbi1d c=i+1Sa<cSa=Sba0=b0Sa<i+1Sa=Sba0=b0
28 27 2ralbidv c=i+1adomSbdomSSa<cSa=Sba0=b0adomSbdomSSa<i+1Sa=Sba0=b0
29 breq2 c=SA+1Sa<cSa<SA+1
30 29 imbi1d c=SA+1Sa<cSa=Sba0=b0Sa<SA+1Sa=Sba0=b0
31 30 2ralbidv c=SA+1adomSbdomSSa<cSa=Sba0=b0adomSbdomSSa<SA+1Sa=Sba0=b0
32 12 ffvelcdmi adomSSaW
33 8 32 sselid adomSSaWordI×2𝑜
34 lencl SaWordI×2𝑜Sa0
35 33 34 syl adomSSa0
36 nn0nlt0 Sa0¬Sa<0
37 35 36 syl adomS¬Sa<0
38 37 pm2.21d adomSSa<0Sa=Sba0=b0
39 38 adantr adomSbdomSSa<0Sa=Sba0=b0
40 39 rgen2 adomSbdomSSa<0Sa=Sba0=b0
41 simpl1 adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0adomSbdomSSa<iSa=Sba0=b0
42 simpl3l adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0Sc=i
43 breq2 Sc=iSa<ScSa<i
44 43 imbi1d Sc=iSa<ScSa=Sba0=b0Sa<iSa=Sba0=b0
45 44 2ralbidv Sc=iadomSbdomSSa<ScSa=Sba0=b0adomSbdomSSa<iSa=Sba0=b0
46 42 45 syl adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0adomSbdomSSa<ScSa=Sba0=b0adomSbdomSSa<iSa=Sba0=b0
47 41 46 mpbird adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0adomSbdomSSa<ScSa=Sba0=b0
48 simpl2l adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0cdomS
49 simpl2r adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0ddomS
50 simpl3r adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0Sc=Sd
51 simpr adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0¬c0=d0
52 1 2 3 4 5 6 47 48 49 50 51 efgredlem ¬adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0
53 iman adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sdc0=d0¬adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sd¬c0=d0
54 52 53 mpbir adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sdc0=d0
55 54 3expia adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sdc0=d0
56 55 expd adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sdc0=d0
57 56 ralrimivva adomSbdomSSa<iSa=Sba0=b0cdomSddomSSc=iSc=Sdc0=d0
58 2fveq3 c=aSc=Sa
59 58 eqeq1d c=aSc=iSa=i
60 fveqeq2 c=aSc=SdSa=Sd
61 fveq1 c=ac0=a0
62 61 eqeq1d c=ac0=d0a0=d0
63 60 62 imbi12d c=aSc=Sdc0=d0Sa=Sda0=d0
64 59 63 imbi12d c=aSc=iSc=Sdc0=d0Sa=iSa=Sda0=d0
65 fveq2 d=bSd=Sb
66 65 eqeq2d d=bSa=SdSa=Sb
67 fveq1 d=bd0=b0
68 67 eqeq2d d=ba0=d0a0=b0
69 66 68 imbi12d d=bSa=Sda0=d0Sa=Sba0=b0
70 69 imbi2d d=bSa=iSa=Sda0=d0Sa=iSa=Sba0=b0
71 64 70 cbvral2vw cdomSddomSSc=iSc=Sdc0=d0adomSbdomSSa=iSa=Sba0=b0
72 57 71 sylib adomSbdomSSa<iSa=Sba0=b0adomSbdomSSa=iSa=Sba0=b0
73 72 ancli adomSbdomSSa<iSa=Sba0=b0adomSbdomSSa<iSa=Sba0=b0adomSbdomSSa=iSa=Sba0=b0
74 35 adantr adomSbdomSSa0
75 nn0leltp1 Sa0i0SaiSa<i+1
76 nn0re Sa0Sa
77 nn0re i0i
78 leloe SaiSaiSa<iSa=i
79 76 77 78 syl2an Sa0i0SaiSa<iSa=i
80 75 79 bitr3d Sa0i0Sa<i+1Sa<iSa=i
81 80 ancoms i0Sa0Sa<i+1Sa<iSa=i
82 74 81 sylan2 i0adomSbdomSSa<i+1Sa<iSa=i
83 82 imbi1d i0adomSbdomSSa<i+1Sa=Sba0=b0Sa<iSa=iSa=Sba0=b0
84 jaob Sa<iSa=iSa=Sba0=b0Sa<iSa=Sba0=b0Sa=iSa=Sba0=b0
85 83 84 bitrdi i0adomSbdomSSa<i+1Sa=Sba0=b0Sa<iSa=Sba0=b0Sa=iSa=Sba0=b0
86 85 2ralbidva i0adomSbdomSSa<i+1Sa=Sba0=b0adomSbdomSSa<iSa=Sba0=b0Sa=iSa=Sba0=b0
87 r19.26-2 adomSbdomSSa<iSa=Sba0=b0Sa=iSa=Sba0=b0adomSbdomSSa<iSa=Sba0=b0adomSbdomSSa=iSa=Sba0=b0
88 86 87 bitrdi i0adomSbdomSSa<i+1Sa=Sba0=b0adomSbdomSSa<iSa=Sba0=b0adomSbdomSSa=iSa=Sba0=b0
89 73 88 imbitrrid i0adomSbdomSSa<iSa=Sba0=b0adomSbdomSSa<i+1Sa=Sba0=b0
90 22 25 28 31 40 89 nn0ind SA+10adomSbdomSSa<SA+1Sa=Sba0=b0
91 19 90 syl AdomSBdomSadomSbdomSSa<SA+1Sa=Sba0=b0
92 17 nn0red AdomSBdomSSA
93 92 ltp1d AdomSBdomSSA<SA+1
94 2fveq3 a=ASa=SA
95 94 breq1d a=ASa<SA+1SA<SA+1
96 fveqeq2 a=ASa=SbSA=Sb
97 fveq1 a=Aa0=A0
98 97 eqeq1d a=Aa0=b0A0=b0
99 96 98 imbi12d a=ASa=Sba0=b0SA=SbA0=b0
100 95 99 imbi12d a=ASa<SA+1Sa=Sba0=b0SA<SA+1SA=SbA0=b0
101 fveq2 b=BSb=SB
102 101 eqeq2d b=BSA=SbSA=SB
103 fveq1 b=Bb0=B0
104 103 eqeq2d b=BA0=b0A0=B0
105 102 104 imbi12d b=BSA=SbA0=b0SA=SBA0=B0
106 105 imbi2d b=BSA<SA+1SA=SbA0=b0SA<SA+1SA=SBA0=B0
107 100 106 rspc2v AdomSBdomSadomSbdomSSa<SA+1Sa=Sba0=b0SA<SA+1SA=SBA0=B0
108 91 93 107 mp2d AdomSBdomSSA=SBA0=B0
109 108 3impia AdomSBdomSSA=SBA0=B0