Metamath Proof Explorer


Theorem elntg2

Description: The line definition in the Tarski structure for the Euclidean geometry. In contrast to elntg , the betweenness can be strengthened by excluding 1 resp. 0 from the related intervals (because of x =/= y ). (Contributed by AV, 14-Feb-2023)

Ref Expression
Hypotheses elntg2.1 P=Base𝔼𝒢N
elntg2.2 I=1N
Assertion elntg2 NLine𝒢𝔼𝒢N=xP,yPxpP|k01iIpi=1kxi+kyil01iIxi=1lpi+lyim01iIyi=1mxi+mpi

Proof

Step Hyp Ref Expression
1 elntg2.1 P=Base𝔼𝒢N
2 elntg2.2 I=1N
3 eqid Itv𝔼𝒢N=Itv𝔼𝒢N
4 1 3 elntg NLine𝒢𝔼𝒢N=xP,yPxpP|pxItv𝔼𝒢NyxpItv𝔼𝒢NyyxItv𝔼𝒢Np
5 simpl1 NxPyPxpPN
6 simpl2 NxPyPxpPxP
7 eldifi yPxyP
8 7 3ad2ant3 NxPyPxyP
9 8 adantr NxPyPxpPyP
10 simpr NxPyPxpPpP
11 5 1 3 6 9 10 ebtwntg NxPyPxpPpBtwnxypxItv𝔼𝒢Ny
12 eengbas N𝔼N=Base𝔼𝒢N
13 1 12 eqtr4id NP=𝔼N
14 13 3ad2ant1 NxPyPxP=𝔼N
15 14 eleq2d NxPyPxpPp𝔼N
16 15 biimpa NxPyPxpPp𝔼N
17 13 eleq2d NxPx𝔼N
18 17 biimpa NxPx𝔼N
19 18 3adant3 NxPyPxx𝔼N
20 19 adantr NxPyPxpPx𝔼N
21 13 eleq2d NyPy𝔼N
22 21 biimpcd yPNy𝔼N
23 22 7 syl11 NyPxy𝔼N
24 23 a1d NxPyPxy𝔼N
25 24 3imp NxPyPxy𝔼N
26 25 adantr NxPyPxpPy𝔼N
27 brbtwn p𝔼Nx𝔼Ny𝔼NpBtwnxyk01i1Npi=1kxi+kyi
28 16 20 26 27 syl3anc NxPyPxpPpBtwnxyk01i1Npi=1kxi+kyi
29 2 raleqi iIpi=1kxi+kyii1Npi=1kxi+kyi
30 29 rexbii k01iIpi=1kxi+kyik01i1Npi=1kxi+kyi
31 28 30 bitr4di NxPyPxpPpBtwnxyk01iIpi=1kxi+kyi
32 11 31 bitr3d NxPyPxpPpxItv𝔼𝒢Nyk01iIpi=1kxi+kyi
33 5 1 3 10 9 6 ebtwntg NxPyPxpPxBtwnpyxpItv𝔼𝒢Ny
34 brbtwn x𝔼Np𝔼Ny𝔼NxBtwnpyl01i1Nxi=1lpi+lyi
35 20 16 26 34 syl3anc NxPyPxpPxBtwnpyl01i1Nxi=1lpi+lyi
36 33 35 bitr3d NxPyPxpPxpItv𝔼𝒢Nyl01i1Nxi=1lpi+lyi
37 0xr 0*
38 1xr 1*
39 0le1 01
40 snunico 0*1*01011=01
41 37 38 39 40 mp3an 011=01
42 41 eqcomi 01=011
43 42 a1i NxPyPxpP01=011
44 43 rexeqdv NxPyPxpPl01i1Nxi=1lpi+lyil011i1Nxi=1lpi+lyi
45 rexun l011i1Nxi=1lpi+lyil01i1Nxi=1lpi+lyil1i1Nxi=1lpi+lyi
46 eldifsn yPxyPyx
47 elee Nx𝔼Nx:1N
48 ffn x:1NxFn1N
49 47 48 syl6bi Nx𝔼NxFn1N
50 17 49 sylbid NxPxFn1N
51 50 a1i yPNxPxFn1N
52 51 3imp yPNxPxFn1N
53 elee Ny𝔼Ny:1N
54 ffn y:1NyFn1N
55 53 54 syl6bi Ny𝔼NyFn1N
56 21 55 sylbid NyPyFn1N
57 56 a1i xPNyPyFn1N
58 57 3imp31 yPNxPyFn1N
59 eqfnfv xFn1NyFn1Nx=yi1Nxi=yi
60 52 58 59 syl2anc yPNxPx=yi1Nxi=yi
61 60 biimprd yPNxPi1Nxi=yix=y
62 eqcom y=xx=y
63 61 62 imbitrrdi yPNxPi1Nxi=yiy=x
64 63 necon3ad yPNxPyx¬i1Nxi=yi
65 64 3exp yPNxPyx¬i1Nxi=yi
66 65 com24 yPyxxPN¬i1Nxi=yi
67 66 imp yPyxxPN¬i1Nxi=yi
68 46 67 sylbi yPxxPN¬i1Nxi=yi
69 68 3imp31 NxPyPx¬i1Nxi=yi
70 69 adantr NxPyPxpP¬i1Nxi=yi
71 13 eleq2d NpPp𝔼N
72 elee Np𝔼Np:1N
73 72 biimpd Np𝔼Np:1N
74 71 73 sylbid NpPp:1N
75 74 3ad2ant1 NxPyPxpPp:1N
76 75 imp NxPyPxpPp:1N
77 76 ffvelcdmda NxPyPxpPi1Npi
78 77 recnd NxPyPxpPi1Npi
79 78 mul02d NxPyPxpPi1N0pi=0
80 22 53 mpbidi yPNy:1N
81 80 7 syl11 NyPxy:1N
82 81 a1d NxPyPxy:1N
83 82 3imp NxPyPxy:1N
84 83 adantr NxPyPxpPy:1N
85 84 ffvelcdmda NxPyPxpPi1Nyi
86 85 recnd NxPyPxpPi1Nyi
87 86 mullidd NxPyPxpPi1N1yi=yi
88 79 87 oveq12d NxPyPxpPi1N0pi+1yi=0+yi
89 86 addlidd NxPyPxpPi1N0+yi=yi
90 88 89 eqtrd NxPyPxpPi1N0pi+1yi=yi
91 90 eqeq2d NxPyPxpPi1Nxi=0pi+1yixi=yi
92 91 ralbidva NxPyPxpPi1Nxi=0pi+1yii1Nxi=yi
93 70 92 mtbird NxPyPxpP¬i1Nxi=0pi+1yi
94 1re 1
95 oveq2 l=11l=11
96 95 oveq1d l=11lpi=11pi
97 1m1e0 11=0
98 97 oveq1i 11pi=0pi
99 96 98 eqtrdi l=11lpi=0pi
100 oveq1 l=1lyi=1yi
101 99 100 oveq12d l=11lpi+lyi=0pi+1yi
102 101 eqeq2d l=1xi=1lpi+lyixi=0pi+1yi
103 102 ralbidv l=1i1Nxi=1lpi+lyii1Nxi=0pi+1yi
104 103 rexsng 1l1i1Nxi=1lpi+lyii1Nxi=0pi+1yi
105 94 104 ax-mp l1i1Nxi=1lpi+lyii1Nxi=0pi+1yi
106 93 105 sylnibr NxPyPxpP¬l1i1Nxi=1lpi+lyi
107 2 raleqi iIxi=1lpi+lyii1Nxi=1lpi+lyi
108 107 rexbii l01iIxi=1lpi+lyil01i1Nxi=1lpi+lyi
109 biorf ¬l1i1Nxi=1lpi+lyil01i1Nxi=1lpi+lyil1i1Nxi=1lpi+lyil01i1Nxi=1lpi+lyi
110 108 109 bitrid ¬l1i1Nxi=1lpi+lyil01iIxi=1lpi+lyil1i1Nxi=1lpi+lyil01i1Nxi=1lpi+lyi
111 106 110 syl NxPyPxpPl01iIxi=1lpi+lyil1i1Nxi=1lpi+lyil01i1Nxi=1lpi+lyi
112 orcom l1i1Nxi=1lpi+lyil01i1Nxi=1lpi+lyil01i1Nxi=1lpi+lyil1i1Nxi=1lpi+lyi
113 111 112 bitr2di NxPyPxpPl01i1Nxi=1lpi+lyil1i1Nxi=1lpi+lyil01iIxi=1lpi+lyi
114 45 113 bitrid NxPyPxpPl011i1Nxi=1lpi+lyil01iIxi=1lpi+lyi
115 36 44 114 3bitrd NxPyPxpPxpItv𝔼𝒢Nyl01iIxi=1lpi+lyi
116 5 1 3 6 10 9 ebtwntg NxPyPxpPyBtwnxpyxItv𝔼𝒢Np
117 brbtwn y𝔼Nx𝔼Np𝔼NyBtwnxpm01i1Nyi=1mxi+mpi
118 26 20 16 117 syl3anc NxPyPxpPyBtwnxpm01i1Nyi=1mxi+mpi
119 116 118 bitr3d NxPyPxpPyxItv𝔼𝒢Npm01i1Nyi=1mxi+mpi
120 snunioc 0*1*01001=01
121 37 38 39 120 mp3an 001=01
122 121 eqcomi 01=001
123 122 a1i NxPyPxpP01=001
124 123 rexeqdv NxPyPxpPm01i1Nyi=1mxi+mpim001i1Nyi=1mxi+mpi
125 rexun m001i1Nyi=1mxi+mpim0i1Nyi=1mxi+mpim01i1Nyi=1mxi+mpi
126 eqcom xi=yiyi=xi
127 126 ralbii i1Nxi=yii1Nyi=xi
128 70 127 sylnib NxPyPxpP¬i1Nyi=xi
129 17 biimpd NxPx𝔼N
130 129 47 sylibd NxPx:1N
131 130 imp NxPx:1N
132 131 3adant3 NxPyPxx:1N
133 132 adantr NxPyPxpPx:1N
134 133 ffvelcdmda NxPyPxpPi1Nxi
135 134 recnd NxPyPxpPi1Nxi
136 135 mullidd NxPyPxpPi1N1xi=xi
137 136 79 oveq12d NxPyPxpPi1N1xi+0pi=xi+0
138 135 addridd NxPyPxpPi1Nxi+0=xi
139 137 138 eqtrd NxPyPxpPi1N1xi+0pi=xi
140 139 eqeq2d NxPyPxpPi1Nyi=1xi+0piyi=xi
141 140 ralbidva NxPyPxpPi1Nyi=1xi+0pii1Nyi=xi
142 128 141 mtbird NxPyPxpP¬i1Nyi=1xi+0pi
143 0re 0
144 oveq2 m=01m=10
145 144 oveq1d m=01mxi=10xi
146 1m0e1 10=1
147 146 oveq1i 10xi=1xi
148 145 147 eqtrdi m=01mxi=1xi
149 oveq1 m=0mpi=0pi
150 148 149 oveq12d m=01mxi+mpi=1xi+0pi
151 150 eqeq2d m=0yi=1mxi+mpiyi=1xi+0pi
152 151 ralbidv m=0i1Nyi=1mxi+mpii1Nyi=1xi+0pi
153 152 rexsng 0m0i1Nyi=1mxi+mpii1Nyi=1xi+0pi
154 143 153 ax-mp m0i1Nyi=1mxi+mpii1Nyi=1xi+0pi
155 142 154 sylnibr NxPyPxpP¬m0i1Nyi=1mxi+mpi
156 2 raleqi iIyi=1mxi+mpii1Nyi=1mxi+mpi
157 156 rexbii m01iIyi=1mxi+mpim01i1Nyi=1mxi+mpi
158 biorf ¬m0i1Nyi=1mxi+mpim01i1Nyi=1mxi+mpim0i1Nyi=1mxi+mpim01i1Nyi=1mxi+mpi
159 157 158 bitrid ¬m0i1Nyi=1mxi+mpim01iIyi=1mxi+mpim0i1Nyi=1mxi+mpim01i1Nyi=1mxi+mpi
160 155 159 syl NxPyPxpPm01iIyi=1mxi+mpim0i1Nyi=1mxi+mpim01i1Nyi=1mxi+mpi
161 125 160 bitr4id NxPyPxpPm001i1Nyi=1mxi+mpim01iIyi=1mxi+mpi
162 119 124 161 3bitrd NxPyPxpPyxItv𝔼𝒢Npm01iIyi=1mxi+mpi
163 32 115 162 3orbi123d NxPyPxpPpxItv𝔼𝒢NyxpItv𝔼𝒢NyyxItv𝔼𝒢Npk01iIpi=1kxi+kyil01iIxi=1lpi+lyim01iIyi=1mxi+mpi
164 163 rabbidva NxPyPxpP|pxItv𝔼𝒢NyxpItv𝔼𝒢NyyxItv𝔼𝒢Np=pP|k01iIpi=1kxi+kyil01iIxi=1lpi+lyim01iIyi=1mxi+mpi
165 164 mpoeq3dva NxP,yPxpP|pxItv𝔼𝒢NyxpItv𝔼𝒢NyyxItv𝔼𝒢Np=xP,yPxpP|k01iIpi=1kxi+kyil01iIxi=1lpi+lyim01iIyi=1mxi+mpi
166 4 165 eqtrd NLine𝒢𝔼𝒢N=xP,yPxpP|k01iIpi=1kxi+kyil01iIxi=1lpi+lyim01iIyi=1mxi+mpi