Metamath Proof Explorer


Theorem etransclem47

Description: _e is transcendental. Section *5 of Juillerat p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem47.q φ Q Poly 0 𝑝
etransclem47.qe0 φ Q e = 0
etransclem47.a A = coeff Q
etransclem47.a0 φ A 0 0
etransclem47.m M = deg Q
etransclem47.p φ P
etransclem47.ap φ A 0 < P
etransclem47.mp φ M ! < P
etransclem47.9 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! < 1
etransclem47.f F = x x P 1 j = 1 M x j P
etransclem47.l L = j = 0 M A j e j 0 j e x F x dx
etransclem47.k K = L P 1 !
Assertion etransclem47 φ k k 0 k < 1

Proof

Step Hyp Ref Expression
1 etransclem47.q φ Q Poly 0 𝑝
2 etransclem47.qe0 φ Q e = 0
3 etransclem47.a A = coeff Q
4 etransclem47.a0 φ A 0 0
5 etransclem47.m M = deg Q
6 etransclem47.p φ P
7 etransclem47.ap φ A 0 < P
8 etransclem47.mp φ M ! < P
9 etransclem47.9 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! < 1
10 etransclem47.f F = x x P 1 j = 1 M x j P
11 etransclem47.l L = j = 0 M A j e j 0 j e x F x dx
12 etransclem47.k K = L P 1 !
13 12 a1i φ K = L P 1 !
14 ssid
15 14 a1i φ
16 reelprrecn
17 16 a1i φ
18 reopn topGen ran .
19 eqid TopOpen fld = TopOpen fld
20 19 tgioo2 topGen ran . = TopOpen fld 𝑡
21 18 20 eleqtri TopOpen fld 𝑡
22 21 a1i φ TopOpen fld 𝑡
23 prmnn P P
24 6 23 syl φ P
25 eqid M P + P - 1 = M P + P - 1
26 fveq2 y = x D n F i y = D n F i x
27 26 sumeq2sdv y = x i = 0 M P + P - 1 D n F i y = i = 0 M P + P - 1 D n F i x
28 27 cbvmptv y i = 0 M P + P - 1 D n F i y = x i = 0 M P + P - 1 D n F i x
29 negeq z = x z = x
30 29 oveq2d z = x e z = e x
31 fveq2 z = x y i = 0 M P + P - 1 D n F i y z = y i = 0 M P + P - 1 D n F i y x
32 30 31 oveq12d z = x e z y i = 0 M P + P - 1 D n F i y z = e x y i = 0 M P + P - 1 D n F i y x
33 32 negeqd z = x e z y i = 0 M P + P - 1 D n F i y z = e x y i = 0 M P + P - 1 D n F i y x
34 33 cbvmptv z 0 j e z y i = 0 M P + P - 1 D n F i y z = x 0 j e x y i = 0 M P + P - 1 D n F i y x
35 1 2 3 5 15 17 22 24 10 11 25 28 34 etransclem46 φ L P 1 ! = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
36 fzfid φ 0 M Fin
37 fzfid φ 0 M P + P - 1 Fin
38 xpfi 0 M Fin 0 M P + P - 1 Fin 0 M × 0 M P + P - 1 Fin
39 36 37 38 syl2anc φ 0 M × 0 M P + P - 1 Fin
40 1 eldifad φ Q Poly
41 0zd φ 0
42 3 coef2 Q Poly 0 A : 0
43 40 41 42 syl2anc φ A : 0
44 43 adantr φ k 0 M × 0 M P + P - 1 A : 0
45 xp1st k 0 M × 0 M P + P - 1 1 st k 0 M
46 elfznn0 1 st k 0 M 1 st k 0
47 45 46 syl k 0 M × 0 M P + P - 1 1 st k 0
48 47 adantl φ k 0 M × 0 M P + P - 1 1 st k 0
49 44 48 ffvelrnd φ k 0 M × 0 M P + P - 1 A 1 st k
50 49 zcnd φ k 0 M × 0 M P + P - 1 A 1 st k
51 16 a1i φ k 0 M × 0 M P + P - 1
52 21 a1i φ k 0 M × 0 M P + P - 1 TopOpen fld 𝑡
53 24 adantr φ k 0 M × 0 M P + P - 1 P
54 dgrcl Q Poly deg Q 0
55 40 54 syl φ deg Q 0
56 5 55 eqeltrid φ M 0
57 56 adantr φ k 0 M × 0 M P + P - 1 M 0
58 xp2nd k 0 M × 0 M P + P - 1 2 nd k 0 M P + P - 1
59 elfznn0 2 nd k 0 M P + P - 1 2 nd k 0
60 58 59 syl k 0 M × 0 M P + P - 1 2 nd k 0
61 60 adantl φ k 0 M × 0 M P + P - 1 2 nd k 0
62 51 52 53 57 10 61 etransclem33 φ k 0 M × 0 M P + P - 1 D n F 2 nd k :
63 48 nn0red φ k 0 M × 0 M P + P - 1 1 st k
64 62 63 ffvelrnd φ k 0 M × 0 M P + P - 1 D n F 2 nd k 1 st k
65 50 64 mulcld φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k
66 39 65 fsumcl φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k
67 nnm1nn0 P P 1 0
68 24 67 syl φ P 1 0
69 68 faccld φ P 1 !
70 69 nncnd φ P 1 !
71 69 nnne0d φ P 1 ! 0
72 66 70 71 divnegd φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
73 72 eqcomd φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
74 13 35 73 3eqtrd φ K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
75 eqid k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
76 24 56 10 43 75 etransclem45 φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
77 76 znegcld φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
78 74 77 eqeltrd φ K
79 12 35 syl5eq φ K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
80 66 70 71 divcld φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
81 43 4 56 6 7 8 10 75 etransclem44 φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! 0
82 80 81 negne0d φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! 0
83 73 82 eqnetrd φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! 0
84 79 83 eqnetrd φ K 0
85 eldifsni Q Poly 0 𝑝 Q 0 𝑝
86 1 85 syl φ Q 0 𝑝
87 ere e
88 87 recni e
89 88 a1i φ e
90 dgrnznn Q Poly Q 0 𝑝 e Q e = 0 deg Q
91 40 86 89 2 90 syl22anc φ deg Q
92 5 91 eqeltrid φ M
93 43 11 12 24 92 10 9 etransclem23 φ K < 1
94 neeq1 k = K k 0 K 0
95 fveq2 k = K k = K
96 95 breq1d k = K k < 1 K < 1
97 94 96 anbi12d k = K k 0 k < 1 K 0 K < 1
98 97 rspcev K K 0 K < 1 k k 0 k < 1
99 78 84 93 98 syl12anc φ k k 0 k < 1