Metamath Proof Explorer


Theorem f1oweALT

Description: Alternate proof of f1owe , more direct since not using the isomorphism predicate, but requiring ax-un . (Contributed by NM, 4-Mar-1997) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis f1oweALT.1 R=xy|FxSFy
Assertion f1oweALT F:A1-1 ontoBSWeBRWeA

Proof

Step Hyp Ref Expression
1 f1oweALT.1 R=xy|FxSFy
2 f1ofo F:A1-1 ontoBF:AontoB
3 df-fo F:AontoBFFnAranF=B
4 freq2 ranF=BSFrranFSFrB
5 4 biimprd ranF=BSFrBSFrranF
6 df-fn FFnAFunFdomF=A
7 df-fr SFrranFwwranFwuwfw¬fSu
8 vex zV
9 8 funimaex FunFFzV
10 n0 zwwz
11 funfvima2 FunFzdomFwzFwFz
12 ne0i FwFzFz
13 11 12 syl6 FunFzdomFwzFz
14 13 exlimdv FunFzdomFwwzFz
15 10 14 biimtrid FunFzdomFzFz
16 15 imp FunFzdomFzFz
17 imassrn FzranF
18 16 17 jctil FunFzdomFzFzranFFz
19 sseq1 w=FzwranFFzranF
20 neeq1 w=FzwFz
21 19 20 anbi12d w=FzwranFwFzranFFz
22 raleq w=Fzfw¬fSufFz¬fSu
23 22 rexeqbi1dv w=Fzuwfw¬fSuuFzfFz¬fSu
24 21 23 imbi12d w=FzwranFwuwfw¬fSuFzranFFzuFzfFz¬fSu
25 24 spcgv FzVwwranFwuwfw¬fSuFzranFFzuFzfFz¬fSu
26 18 25 syl7 FzVwwranFwuwfw¬fSuFunFzdomFzuFzfFz¬fSu
27 9 26 syl FunFwwranFwuwfw¬fSuFunFzdomFzuFzfFz¬fSu
28 7 27 biimtrid FunFSFrranFFunFzdomFzuFzfFz¬fSu
29 28 com23 FunFFunFzdomFzSFrranFuFzfFz¬fSu
30 29 expd FunFFunFzdomFzSFrranFuFzfFz¬fSu
31 30 anabsi5 FunFzdomFzSFrranFuFzfFz¬fSu
32 31 impd FunFzdomFzSFrranFuFzfFz¬fSu
33 fores FunFzdomFFz:zontoFz
34 vex vV
35 vex wV
36 fveq2 x=vFx=Fv
37 36 breq1d x=vFxSFyFvSFy
38 fveq2 y=wFy=Fw
39 38 breq2d y=wFvSFyFvSFw
40 34 35 37 39 1 brab vRwFvSFw
41 fvres vzFzv=Fv
42 fvres wzFzw=Fw
43 41 42 breqan12rd wzvzFzvSFzwFvSFw
44 40 43 bitr4id wzvzvRwFzvSFzw
45 44 notbid wzvz¬vRw¬FzvSFzw
46 45 ralbidva wzvz¬vRwvz¬FzvSFzw
47 46 rexbiia wzvz¬vRwwzvz¬FzvSFzw
48 breq1 Fzv=fFzvSFzwfSFzw
49 48 notbid Fzv=f¬FzvSFzw¬fSFzw
50 49 cbvfo Fz:zontoFzvz¬FzvSFzwfFz¬fSFzw
51 50 rexbidv Fz:zontoFzwzvz¬FzvSFzwwzfFz¬fSFzw
52 breq2 Fzw=ufSFzwfSu
53 52 notbid Fzw=u¬fSFzw¬fSu
54 53 ralbidv Fzw=ufFz¬fSFzwfFz¬fSu
55 54 cbvexfo Fz:zontoFzwzfFz¬fSFzwuFzfFz¬fSu
56 51 55 bitrd Fz:zontoFzwzvz¬FzvSFzwuFzfFz¬fSu
57 47 56 bitrid Fz:zontoFzwzvz¬vRwuFzfFz¬fSu
58 33 57 syl FunFzdomFwzvz¬vRwuFzfFz¬fSu
59 32 58 sylibrd FunFzdomFzSFrranFwzvz¬vRw
60 59 exp4b FunFzdomFzSFrranFwzvz¬vRw
61 60 com34 FunFzdomFSFrranFzwzvz¬vRw
62 61 com23 FunFSFrranFzdomFzwzvz¬vRw
63 62 imp4a FunFSFrranFzdomFzwzvz¬vRw
64 63 alrimdv FunFSFrranFzzdomFzwzvz¬vRw
65 df-fr RFrdomFzzdomFzwzvz¬vRw
66 64 65 imbitrrdi FunFSFrranFRFrdomF
67 freq2 domF=ARFrdomFRFrA
68 67 biimpd domF=ARFrdomFRFrA
69 66 68 sylan9 FunFdomF=ASFrranFRFrA
70 6 69 sylbi FFnASFrranFRFrA
71 5 70 sylan9r FFnAranF=BSFrBRFrA
72 3 71 sylbi F:AontoBSFrBRFrA
73 2 72 syl F:A1-1 ontoBSFrBRFrA
74 df-f1o F:A1-1 ontoBF:A1-1BF:AontoB
75 fveq2 x=wFx=Fw
76 75 breq1d x=wFxSFyFwSFy
77 fveq2 y=vFy=Fv
78 77 breq2d y=vFwSFyFwSFv
79 35 34 76 78 1 brab wRvFwSFv
80 79 a1i F:A1-1BwAvAwRvFwSFv
81 f1fveq F:A1-1BwAvAFw=Fvw=v
82 81 bicomd F:A1-1BwAvAw=vFw=Fv
83 40 a1i F:A1-1BwAvAvRwFvSFw
84 80 82 83 3orbi123d F:A1-1BwAvAwRvw=vvRwFwSFvFw=FvFvSFw
85 84 2ralbidva F:A1-1BwAvAwRvw=vvRwwAvAFwSFvFw=FvFvSFw
86 breq1 Fw=uFwSFvuSFv
87 eqeq1 Fw=uFw=Fvu=Fv
88 breq2 Fw=uFvSFwFvSu
89 86 87 88 3orbi123d Fw=uFwSFvFw=FvFvSFwuSFvu=FvFvSu
90 89 ralbidv Fw=uvAFwSFvFw=FvFvSFwvAuSFvu=FvFvSu
91 90 cbvfo F:AontoBwAvAFwSFvFw=FvFvSFwuBvAuSFvu=FvFvSu
92 breq2 Fv=fuSFvuSf
93 eqeq2 Fv=fu=Fvu=f
94 breq1 Fv=fFvSufSu
95 92 93 94 3orbi123d Fv=fuSFvu=FvFvSuuSfu=ffSu
96 95 cbvfo F:AontoBvAuSFvu=FvFvSufBuSfu=ffSu
97 96 ralbidv F:AontoBuBvAuSFvu=FvFvSuuBfBuSfu=ffSu
98 91 97 bitrd F:AontoBwAvAFwSFvFw=FvFvSFwuBfBuSfu=ffSu
99 85 98 sylan9bb F:A1-1BF:AontoBwAvAwRvw=vvRwuBfBuSfu=ffSu
100 74 99 sylbi F:A1-1 ontoBwAvAwRvw=vvRwuBfBuSfu=ffSu
101 100 biimprd F:A1-1 ontoBuBfBuSfu=ffSuwAvAwRvw=vvRw
102 73 101 anim12d F:A1-1 ontoBSFrBuBfBuSfu=ffSuRFrAwAvAwRvw=vvRw
103 dfwe2 SWeBSFrBuBfBuSfu=ffSu
104 dfwe2 RWeARFrAwAvAwRvw=vvRw
105 102 103 104 3imtr4g F:A1-1 ontoBSWeBRWeA