Metamath Proof Explorer


Theorem fermltlchr

Description: A generalization of Fermat's little theorem in a commutative ring F of prime characteristic. See fermltl . (Contributed by Thierry Arnoux, 9-Jan-2024)

Ref Expression
Hypotheses fermltlchr.z P=chrF
fermltlchr.b B=BaseF
fermltlchr.p ×˙=mulGrpF
fermltlchr.1 A=ℤRHomFE
fermltlchr.2 φP
fermltlchr.3 φE
fermltlchr.4 φFCRing
Assertion fermltlchr φP×˙A=A

Proof

Step Hyp Ref Expression
1 fermltlchr.z P=chrF
2 fermltlchr.b B=BaseF
3 fermltlchr.p ×˙=mulGrpF
4 fermltlchr.1 A=ℤRHomFE
5 fermltlchr.2 φP
6 fermltlchr.3 φE
7 fermltlchr.4 φFCRing
8 prmnn PP
9 8 nnnn0d PP0
10 5 9 syl φP0
11 10 adantr φA=ℤRHomFEP0
12 6 adantr φA=ℤRHomFEE
13 eqid mulGrpfld𝑠=mulGrpfld𝑠
14 zsscn
15 eqid mulGrpfld=mulGrpfld
16 cnfldbas =Basefld
17 15 16 mgpbas =BasemulGrpfld
18 14 17 sseqtri BasemulGrpfld
19 eqid mulGrpfld=mulGrpfld
20 eqid invgmulGrpfld=invgmulGrpfld
21 cnring fldRing
22 15 ringmgp fldRingmulGrpfldMnd
23 21 22 ax-mp mulGrpfldMnd
24 cnfld1 1=1fld
25 15 24 ringidval 1=0mulGrpfld
26 1z 1
27 25 26 eqeltrri 0mulGrpfld
28 eqid 0mulGrpfld=0mulGrpfld
29 13 17 28 ress0g mulGrpfldMnd0mulGrpfld0mulGrpfld=0mulGrpfld𝑠
30 23 27 14 29 mp3an 0mulGrpfld=0mulGrpfld𝑠
31 13 18 19 20 30 ressmulgnn0 P0EPmulGrpfld𝑠E=PmulGrpfldE
32 11 12 31 syl2anc φA=ℤRHomFEPmulGrpfld𝑠E=PmulGrpfldE
33 12 zcnd φA=ℤRHomFEE
34 cnfldexp EP0PmulGrpfldE=EP
35 33 11 34 syl2anc φA=ℤRHomFEPmulGrpfldE=EP
36 32 35 eqtrd φA=ℤRHomFEPmulGrpfld𝑠E=EP
37 36 fveq2d φA=ℤRHomFEℤRHomFPmulGrpfld𝑠E=ℤRHomFEP
38 7 crngringd φFRing
39 eqid ℤRHomF=ℤRHomF
40 39 zrhrhm FRingℤRHomFringRingHomF
41 38 40 syl φℤRHomFringRingHomF
42 zringmpg mulGrpfld𝑠=mulGrpring
43 eqid mulGrpF=mulGrpF
44 42 43 rhmmhm ℤRHomFringRingHomFℤRHomFmulGrpfld𝑠MndHommulGrpF
45 41 44 syl φℤRHomFmulGrpfld𝑠MndHommulGrpF
46 45 adantr φA=ℤRHomFEℤRHomFmulGrpfld𝑠MndHommulGrpF
47 13 17 ressbas2 =BasemulGrpfld𝑠
48 14 47 ax-mp =BasemulGrpfld𝑠
49 eqid mulGrpfld𝑠=mulGrpfld𝑠
50 48 49 3 mhmmulg ℤRHomFmulGrpfld𝑠MndHommulGrpFP0EℤRHomFPmulGrpfld𝑠E=P×˙ℤRHomFE
51 46 11 12 50 syl3anc φA=ℤRHomFEℤRHomFPmulGrpfld𝑠E=P×˙ℤRHomFE
52 6 10 zexpcld φEP
53 eqid -ring=-ring
54 53 zringsubgval EPEEPE=EP-ringE
55 52 6 54 syl2anc φEPE=EP-ringE
56 55 fveq2d φℤRHomFEPE=ℤRHomFEP-ringE
57 52 zred φEP
58 6 zred φE
59 5 8 syl φP
60 59 nnrpd φP+
61 fermltl PEEPmodP=EmodP
62 5 6 61 syl2anc φEPmodP=EmodP
63 eqidd φEmodP=EmodP
64 57 58 58 58 60 62 63 modsub12d φEPEmodP=EEmodP
65 zcn EE
66 65 subidd EEE=0
67 6 66 syl φEE=0
68 67 oveq1d φEEmodP=0modP
69 0mod P+0modP=0
70 60 69 syl φ0modP=0
71 64 68 70 3eqtrd φEPEmodP=0
72 52 6 zsubcld φEPE
73 dvdsval3 PEPEPEPEEPEmodP=0
74 59 72 73 syl2anc φPEPEEPEmodP=0
75 71 74 mpbird φPEPE
76 eqid 0F=0F
77 1 39 76 chrdvds FRingEPEPEPEℤRHomFEPE=0F
78 38 72 77 syl2anc φPEPEℤRHomFEPE=0F
79 75 78 mpbid φℤRHomFEPE=0F
80 rhmghm ℤRHomFringRingHomFℤRHomFringGrpHomF
81 41 80 syl φℤRHomFringGrpHomF
82 zringbas =Basering
83 eqid -F=-F
84 82 53 83 ghmsub ℤRHomFringGrpHomFEPEℤRHomFEP-ringE=ℤRHomFEP-FℤRHomFE
85 81 52 6 84 syl3anc φℤRHomFEP-ringE=ℤRHomFEP-FℤRHomFE
86 56 79 85 3eqtr3rd φℤRHomFEP-FℤRHomFE=0F
87 7 crnggrpd φFGrp
88 eqid BaseF=BaseF
89 82 88 rhmf ℤRHomFringRingHomFℤRHomF:BaseF
90 41 89 syl φℤRHomF:BaseF
91 90 52 ffvelcdmd φℤRHomFEPBaseF
92 90 6 ffvelcdmd φℤRHomFEBaseF
93 88 76 83 grpsubeq0 FGrpℤRHomFEPBaseFℤRHomFEBaseFℤRHomFEP-FℤRHomFE=0FℤRHomFEP=ℤRHomFE
94 87 91 92 93 syl3anc φℤRHomFEP-FℤRHomFE=0FℤRHomFEP=ℤRHomFE
95 86 94 mpbid φℤRHomFEP=ℤRHomFE
96 95 adantr φA=ℤRHomFEℤRHomFEP=ℤRHomFE
97 37 51 96 3eqtr3d φA=ℤRHomFEP×˙ℤRHomFE=ℤRHomFE
98 oveq2 A=ℤRHomFEP×˙A=P×˙ℤRHomFE
99 98 adantl φA=ℤRHomFEP×˙A=P×˙ℤRHomFE
100 simpr φA=ℤRHomFEA=ℤRHomFE
101 97 99 100 3eqtr4d φA=ℤRHomFEP×˙A=A
102 4 101 mpan2 φP×˙A=A