Metamath Proof Explorer


Theorem fldhmf1

Description: A field homomorphism is injective. This follows immediately from the definition of the ring homomorphism that sends the multiplicative identity to the multiplicative identity. (Contributed by metakunt, 7-Jan-2025)

Ref Expression
Hypotheses fldhmf1.1 φKField
fldhmf1.2 φLField
fldhmf1.3 φFKRingHomL
fldhmf1.4 A=BaseK
fldhmf1.5 B=BaseL
Assertion fldhmf1 φF:A1-1B

Proof

Step Hyp Ref Expression
1 fldhmf1.1 φKField
2 fldhmf1.2 φLField
3 fldhmf1.3 φFKRingHomL
4 fldhmf1.4 A=BaseK
5 fldhmf1.5 B=BaseL
6 4 5 rhmf FKRingHomLF:AB
7 3 6 syl φF:AB
8 3 ad4antr φaAbAabFa=FbFKRingHomL
9 rhmghm FKRingHomLFKGrpHomL
10 8 9 syl φaAbAabFa=FbFKGrpHomL
11 simp-4r φaAbAabFa=FbaA
12 isfld KFieldKDivRingKCRing
13 1 12 sylib φKDivRingKCRing
14 13 simpld φKDivRing
15 14 ad4antr φaAbAabFa=FbKDivRing
16 drnggrp KDivRingKGrp
17 15 16 syl φaAbAabFa=FbKGrp
18 simpllr φaAbAabFa=FbbA
19 eqid invgK=invgK
20 4 19 grpinvcl KGrpbAinvgKbA
21 17 18 20 syl2anc φaAbAabFa=FbinvgKbA
22 eqid +K=+K
23 eqid +L=+L
24 4 22 23 ghmlin FKGrpHomLaAinvgKbAFa+KinvgKb=Fa+LFinvgKb
25 10 11 21 24 syl3anc φaAbAabFa=FbFa+KinvgKb=Fa+LFinvgKb
26 eqid invgL=invgL
27 4 19 26 ghminv FKGrpHomLbAFinvgKb=invgLFb
28 10 18 27 syl2anc φaAbAabFa=FbFinvgKb=invgLFb
29 28 oveq2d φaAbAabFa=FbFa+LFinvgKb=Fa+LinvgLFb
30 simpr φaAbAabFa=FbFa=Fb
31 30 oveq1d φaAbAabFa=FbFa+LinvgLFb=Fb+LinvgLFb
32 2 ad3antrrr φaAbAabLField
33 isfld LFieldLDivRingLCRing
34 32 33 sylib φaAbAabLDivRingLCRing
35 34 simpld φaAbAabLDivRing
36 35 adantr φaAbAabFa=FbLDivRing
37 drngring LDivRingLRing
38 36 37 syl φaAbAabFa=FbLRing
39 38 ringgrpd φaAbAabFa=FbLGrp
40 8 6 syl φaAbAabFa=FbF:AB
41 40 18 ffvelcdmd φaAbAabFa=FbFbB
42 eqid 0L=0L
43 5 23 42 26 grprinv LGrpFbBFb+LinvgLFb=0L
44 39 41 43 syl2anc φaAbAabFa=FbFb+LinvgLFb=0L
45 31 44 eqtrd φaAbAabFa=FbFa+LinvgLFb=0L
46 29 45 eqtrd φaAbAabFa=FbFa+LFinvgKb=0L
47 25 46 eqtrd φaAbAabFa=FbFa+KinvgKb=0L
48 47 oveq1d φaAbAabFa=FbFa+KinvgKbLFinvrKa+KinvgKb=0LLFinvrKa+KinvgKb
49 4 22 grpcl KGrpaAinvgKbAa+KinvgKbA
50 17 11 21 49 syl3anc φaAbAabFa=Fba+KinvgKbA
51 4 19 grpinvinv KGrpbAinvgKinvgKb=b
52 17 18 51 syl2anc φaAbAabFa=FbinvgKinvgKb=b
53 simplr φaAbAabFa=Fbab
54 53 necomd φaAbAabFa=Fbba
55 52 54 eqnetrd φaAbAabFa=FbinvgKinvgKba
56 eqid 0K=0K
57 4 22 56 19 grpinvid2 KGrpinvgKbAaAinvgKinvgKb=aa+KinvgKb=0K
58 57 necon3bid KGrpinvgKbAaAinvgKinvgKbaa+KinvgKb0K
59 17 21 11 58 syl3anc φaAbAabFa=FbinvgKinvgKbaa+KinvgKb0K
60 55 59 mpbid φaAbAabFa=Fba+KinvgKb0K
61 50 60 jca φaAbAabFa=Fba+KinvgKbAa+KinvgKb0K
62 eqid UnitK=UnitK
63 4 62 56 drngunit KDivRinga+KinvgKbUnitKa+KinvgKbAa+KinvgKb0K
64 15 63 syl φaAbAabFa=Fba+KinvgKbUnitKa+KinvgKbAa+KinvgKb0K
65 61 64 mpbird φaAbAabFa=Fba+KinvgKbUnitK
66 rhmunitinv FKRingHomLa+KinvgKbUnitKFinvrKa+KinvgKb=invrLFa+KinvgKb
67 8 65 66 syl2anc φaAbAabFa=FbFinvrKa+KinvgKb=invrLFa+KinvgKb
68 elrhmunit FKRingHomLa+KinvgKbUnitKFa+KinvgKbUnitL
69 8 65 68 syl2anc φaAbAabFa=FbFa+KinvgKbUnitL
70 eqid UnitL=UnitL
71 eqid invrL=invrL
72 70 71 unitinvcl LRingFa+KinvgKbUnitLinvrLFa+KinvgKbUnitL
73 38 69 72 syl2anc φaAbAabFa=FbinvrLFa+KinvgKbUnitL
74 5 70 42 drngunit LDivRinginvrLFa+KinvgKbUnitLinvrLFa+KinvgKbBinvrLFa+KinvgKb0L
75 36 74 syl φaAbAabFa=FbinvrLFa+KinvgKbUnitLinvrLFa+KinvgKbBinvrLFa+KinvgKb0L
76 75 biimpd φaAbAabFa=FbinvrLFa+KinvgKbUnitLinvrLFa+KinvgKbBinvrLFa+KinvgKb0L
77 73 76 mpd φaAbAabFa=FbinvrLFa+KinvgKbBinvrLFa+KinvgKb0L
78 77 simpld φaAbAabFa=FbinvrLFa+KinvgKbB
79 67 78 eqeltrd φaAbAabFa=FbFinvrKa+KinvgKbB
80 38 79 jca φaAbAabFa=FbLRingFinvrKa+KinvgKbB
81 eqid L=L
82 5 81 42 ringlz LRingFinvrKa+KinvgKbB0LLFinvrKa+KinvgKb=0L
83 80 82 syl φaAbAabFa=Fb0LLFinvrKa+KinvgKb=0L
84 48 83 eqtrd φaAbAabFa=FbFa+KinvgKbLFinvrKa+KinvgKb=0L
85 84 eqcomd φaAbAabFa=Fb0L=Fa+KinvgKbLFinvrKa+KinvgKb
86 13 simprd φKCRing
87 86 crngringd φKRing
88 87 ad4antr φaAbAabFa=FbKRing
89 eqid invrK=invrK
90 62 89 unitinvcl KRinga+KinvgKbUnitKinvrKa+KinvgKbUnitK
91 88 65 90 syl2anc φaAbAabFa=FbinvrKa+KinvgKbUnitK
92 eqid BaseK=BaseK
93 92 62 unitcl invrKa+KinvgKbUnitKinvrKa+KinvgKbBaseK
94 4 eqcomi BaseK=A
95 93 94 eleqtrdi invrKa+KinvgKbUnitKinvrKa+KinvgKbA
96 91 95 syl φaAbAabFa=FbinvrKa+KinvgKbA
97 eqid K=K
98 4 97 81 rhmmul FKRingHomLa+KinvgKbAinvrKa+KinvgKbAFa+KinvgKbKinvrKa+KinvgKb=Fa+KinvgKbLFinvrKa+KinvgKb
99 8 50 96 98 syl3anc φaAbAabFa=FbFa+KinvgKbKinvrKa+KinvgKb=Fa+KinvgKbLFinvrKa+KinvgKb
100 99 eqcomd φaAbAabFa=FbFa+KinvgKbLFinvrKa+KinvgKb=Fa+KinvgKbKinvrKa+KinvgKb
101 drngring KDivRingKRing
102 15 101 syl φaAbAabFa=FbKRing
103 eqid 1K=1K
104 62 89 97 103 unitrinv KRinga+KinvgKbUnitKa+KinvgKbKinvrKa+KinvgKb=1K
105 102 65 104 syl2anc φaAbAabFa=Fba+KinvgKbKinvrKa+KinvgKb=1K
106 105 fveq2d φaAbAabFa=FbFa+KinvgKbKinvrKa+KinvgKb=F1K
107 eqid 1L=1L
108 103 107 rhm1 FKRingHomLF1K=1L
109 8 108 syl φaAbAabFa=FbF1K=1L
110 106 109 eqtrd φaAbAabFa=FbFa+KinvgKbKinvrKa+KinvgKb=1L
111 85 100 110 3eqtrd φaAbAabFa=Fb0L=1L
112 42 107 drngunz LDivRing1L0L
113 35 112 syl φaAbAab1L0L
114 113 necomd φaAbAab0L1L
115 114 adantr φaAbAabFa=Fb0L1L
116 115 neneqd φaAbAabFa=Fb¬0L=1L
117 111 116 pm2.65da φaAbAab¬Fa=Fb
118 117 neqned φaAbAabFaFb
119 118 ex φaAbAabFaFb
120 119 ralrimiva φaAbAabFaFb
121 120 ralrimiva φaAbAabFaFb
122 7 121 jca φF:ABaAbAabFaFb
123 dff14a F:A1-1BF:ABaAbAabFaFb
124 122 123 sylibr φF:A1-1B