Metamath Proof Explorer


Theorem fmtnodvds

Description: Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 , see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021)

Ref Expression
Assertion fmtnodvds N0MFermatNoNFermatNoN+M2

Proof

Step Hyp Ref Expression
1 simpl N0MN0
2 nn0nnaddcl N0MN+M
3 nnm1nn0 N+MN+M-10
4 2 3 syl N0MN+M-10
5 1red N0M1
6 nnre MM
7 6 adantl N0MM
8 nn0re N0N
9 8 adantr N0MN
10 nnge1 M1M
11 10 adantl N0M1M
12 5 7 9 11 leadd2dd N0MN+1N+M
13 readdcl NMN+M
14 8 6 13 syl2an N0MN+M
15 leaddsub N1N+MN+1N+MNN+M-1
16 9 5 14 15 syl3anc N0MN+1N+MNN+M-1
17 12 16 mpbid N0MNN+M-1
18 elfz2nn0 N0N+M-1N0N+M-10NN+M-1
19 1 4 17 18 syl3anbrc N0MN0N+M-1
20 fzfid N0M0N+M-1Fin
21 fz0ssnn0 0N+M-10
22 21 a1i N0M0N+M-10
23 2nn0 20
24 23 a1i n020
25 id n0n0
26 24 25 nn0expcld n02n0
27 24 26 nn0expcld n022n0
28 27 nn0zd n022n
29 28 peano2zd n022n+1
30 29 adantl N0Mn022n+1
31 df-fmtno FermatNo=n022n+1
32 30 31 fmptd N0MFermatNo:0
33 20 22 32 fprodfvdvdsd N0Mn0N+M-1FermatNonk=0N+M-1FermatNok
34 fveq2 n=NFermatNon=FermatNoN
35 34 breq1d n=NFermatNonk=0N+M-1FermatNokFermatNoNk=0N+M-1FermatNok
36 35 rspcv N0N+M-1n0N+M-1FermatNonk=0N+M-1FermatNokFermatNoNk=0N+M-1FermatNok
37 19 33 36 sylc N0MFermatNoNk=0N+M-1FermatNok
38 elfznn0 k0N+M-1k0
39 38 adantl N0Mk0N+M-1k0
40 fmtnonn k0FermatNok
41 39 40 syl N0Mk0N+M-1FermatNok
42 41 nncnd N0Mk0N+M-1FermatNok
43 20 42 fprodcl N0Mk=0N+M-1FermatNok
44 2cnd N0M2
45 nn0cn N0N
46 nncn MM
47 addcl NMN+M
48 45 46 47 syl2an N0MN+M
49 npcan1 N+MN+M-1+1=N+M
50 48 49 syl N0MN+M-1+1=N+M
51 50 eqcomd N0MN+M=N+M-1+1
52 51 fveq2d N0MFermatNoN+M=FermatNoN+M-1+1
53 fmtnorec2 N+M-10FermatNoN+M-1+1=k=0N+M-1FermatNok+2
54 4 53 syl N0MFermatNoN+M-1+1=k=0N+M-1FermatNok+2
55 52 54 eqtrd N0MFermatNoN+M=k=0N+M-1FermatNok+2
56 43 44 55 mvrraddd N0MFermatNoN+M2=k=0N+M-1FermatNok
57 37 56 breqtrrd N0MFermatNoNFermatNoN+M2