Metamath Proof Explorer


Theorem fsumparts

Description: Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses fsumparts.b k=jA=BV=W
fsumparts.c k=j+1A=CV=X
fsumparts.d k=MA=DV=Y
fsumparts.e k=NA=EV=Z
fsumparts.1 φNM
fsumparts.2 φkMNA
fsumparts.3 φkMNV
Assertion fsumparts φjM..^NBXW=EZ-DY-jM..^NCBX

Proof

Step Hyp Ref Expression
1 fsumparts.b k=jA=BV=W
2 fsumparts.c k=j+1A=CV=X
3 fsumparts.d k=MA=DV=Y
4 fsumparts.e k=NA=EV=Z
5 fsumparts.1 φNM
6 fsumparts.2 φkMNA
7 fsumparts.3 φkMNV
8 sum0 jBXW=0
9 0m0e0 00=0
10 8 9 eqtr4i jBXW=00
11 simpr φN=MN=M
12 11 oveq2d φN=MM..^N=M..^M
13 fzo0 M..^M=
14 12 13 eqtrdi φN=MM..^N=
15 14 sumeq1d φN=MjM..^NBXW=jBXW
16 eluzfz1 NMMMN
17 5 16 syl φMMN
18 eqtr3 k=MN=Mk=N
19 oveq12 A=EV=ZAV=EZ
20 18 4 19 3syl k=MN=MAV=EZ
21 oveq12 A=DV=YAV=DY
22 3 21 syl k=MAV=DY
23 22 adantr k=MN=MAV=DY
24 20 23 eqeq12d k=MN=MAV=AVEZ=DY
25 24 pm5.74da k=MN=MAV=AVN=MEZ=DY
26 eqidd N=MAV=AV
27 25 26 vtoclg MMNN=MEZ=DY
28 27 imp MMNN=MEZ=DY
29 17 28 sylan φN=MEZ=DY
30 29 oveq1d φN=MEZDY=DYDY
31 3 simpld k=MA=D
32 31 eleq1d k=MAD
33 6 ralrimiva φkMNA
34 32 33 17 rspcdva φD
35 3 simprd k=MV=Y
36 35 eleq1d k=MVY
37 7 ralrimiva φkMNV
38 36 37 17 rspcdva φY
39 34 38 mulcld φDY
40 39 subidd φDYDY=0
41 40 adantr φN=MDYDY=0
42 30 41 eqtrd φN=MEZDY=0
43 14 sumeq1d φN=MjM..^NCBX=jCBX
44 sum0 jCBX=0
45 43 44 eqtrdi φN=MjM..^NCBX=0
46 42 45 oveq12d φN=MEZ-DY-jM..^NCBX=00
47 10 15 46 3eqtr4a φN=MjM..^NBXW=EZ-DY-jM..^NCBX
48 fzofi M+1..^NFin
49 48 a1i φNM+1M+1..^NFin
50 eluzel2 NMM
51 5 50 syl φM
52 51 adantr φNM+1M
53 uzid MMM
54 peano2uz MMM+1M
55 fzoss1 M+1MM+1..^NM..^N
56 52 53 54 55 4syl φNM+1M+1..^NM..^N
57 56 sselda φNM+1kM+1..^NkM..^N
58 elfzofz kM..^NkMN
59 6 7 mulcld φkMNAV
60 58 59 sylan2 φkM..^NAV
61 60 adantlr φNM+1kM..^NAV
62 57 61 syldan φNM+1kM+1..^NAV
63 49 62 fsumcl φNM+1kM+1..^NAV
64 4 simpld k=NA=E
65 64 eleq1d k=NAE
66 eluzfz2 NMNMN
67 5 66 syl φNMN
68 65 33 67 rspcdva φE
69 4 simprd k=NV=Z
70 69 eleq1d k=NVZ
71 70 37 67 rspcdva φZ
72 68 71 mulcld φEZ
73 72 adantr φNM+1EZ
74 simpr φNM+1NM+1
75 fzp1ss MM+1NMN
76 52 75 syl φNM+1M+1NMN
77 76 sselda φNM+1kM+1NkMN
78 59 adantlr φNM+1kMNAV
79 77 78 syldan φNM+1kM+1NAV
80 4 19 syl k=NAV=EZ
81 74 79 80 fsumm1 φNM+1k=M+1NAV=k=M+1N1AV+EZ
82 eluzelz NMN
83 5 82 syl φN
84 83 adantr φNM+1N
85 fzoval NM..^N=MN1
86 84 85 syl φNM+1M..^N=MN1
87 52 zcnd φNM+1M
88 ax-1cn 1
89 pncan M1M+1-1=M
90 87 88 89 sylancl φNM+1M+1-1=M
91 90 oveq1d φNM+1M+1-1N1=MN1
92 86 91 eqtr4d φNM+1M..^N=M+1-1N1
93 92 sumeq1d φNM+1jM..^NCX=j=M+1-1N1CX
94 1zzd φNM+11
95 52 peano2zd φNM+1M+1
96 oveq12 A=CV=XAV=CX
97 2 96 syl k=j+1AV=CX
98 94 95 84 79 97 fsumshftm φNM+1k=M+1NAV=j=M+1-1N1CX
99 93 98 eqtr4d φNM+1jM..^NCX=k=M+1NAV
100 fzoval NM+1..^N=M+1N1
101 84 100 syl φNM+1M+1..^N=M+1N1
102 101 sumeq1d φNM+1kM+1..^NAV=k=M+1N1AV
103 102 oveq1d φNM+1kM+1..^NAV+EZ=k=M+1N1AV+EZ
104 81 99 103 3eqtr4d φNM+1jM..^NCX=kM+1..^NAV+EZ
105 63 73 104 comraddd φNM+1jM..^NCX=EZ+kM+1..^NAV
106 105 oveq1d φNM+1jM..^NCXjM..^NBX=EZ+kM+1..^NAV-jM..^NBX
107 fzofzp1 jM..^Nj+1MN
108 2 simpld k=j+1A=C
109 108 eleq1d k=j+1AC
110 109 rspccva kMNAj+1MNC
111 33 107 110 syl2an φjM..^NC
112 elfzofz jM..^NjMN
113 1 simpld k=jA=B
114 113 eleq1d k=jAB
115 114 rspccva kMNAjMNB
116 33 112 115 syl2an φjM..^NB
117 2 simprd k=j+1V=X
118 117 eleq1d k=j+1VX
119 118 rspccva kMNVj+1MNX
120 37 107 119 syl2an φjM..^NX
121 111 116 120 subdird φjM..^NCBX=CXBX
122 121 sumeq2dv φjM..^NCBX=jM..^NCXBX
123 fzofi M..^NFin
124 123 a1i φM..^NFin
125 111 120 mulcld φjM..^NCX
126 116 120 mulcld φjM..^NBX
127 124 125 126 fsumsub φjM..^NCXBX=jM..^NCXjM..^NBX
128 122 127 eqtrd φjM..^NCBX=jM..^NCXjM..^NBX
129 128 adantr φNM+1jM..^NCBX=jM..^NCXjM..^NBX
130 124 126 fsumcl φjM..^NBX
131 130 adantr φNM+1jM..^NBX
132 73 131 63 subsub3d φNM+1EZjM..^NBXkM+1..^NAV=EZ+kM+1..^NAV-jM..^NBX
133 106 129 132 3eqtr4d φNM+1jM..^NCBX=EZjM..^NBXkM+1..^NAV
134 133 oveq2d φNM+1EZ-DY-jM..^NCBX=EZ-DY-EZjM..^NBXkM+1..^NAV
135 39 adantr φNM+1DY
136 131 63 subcld φNM+1jM..^NBXkM+1..^NAV
137 73 135 136 nnncan1d φNM+1EZ-DY-EZjM..^NBXkM+1..^NAV=jM..^NBX-kM+1..^NAV-DY
138 63 135 addcomd φNM+1kM+1..^NAV+DY=DY+kM+1..^NAV
139 eluzp1m1 MNM+1N1M
140 51 139 sylan φNM+1N1M
141 86 eleq2d φNM+1kM..^NkMN1
142 141 biimpar φNM+1kMN1kM..^N
143 142 61 syldan φNM+1kMN1AV
144 140 143 22 fsum1p φNM+1k=MN1AV=DY+k=M+1N1AV
145 86 sumeq1d φNM+1kM..^NAV=k=MN1AV
146 102 oveq2d φNM+1DY+kM+1..^NAV=DY+k=M+1N1AV
147 144 145 146 3eqtr4d φNM+1kM..^NAV=DY+kM+1..^NAV
148 138 147 eqtr4d φNM+1kM+1..^NAV+DY=kM..^NAV
149 oveq12 A=BV=WAV=BW
150 1 149 syl k=jAV=BW
151 150 cbvsumv kM..^NAV=jM..^NBW
152 148 151 eqtrdi φNM+1kM+1..^NAV+DY=jM..^NBW
153 152 oveq2d φNM+1jM..^NBXkM+1..^NAV+DY=jM..^NBXjM..^NBW
154 131 63 135 subsub4d φNM+1jM..^NBX-kM+1..^NAV-DY=jM..^NBXkM+1..^NAV+DY
155 1 simprd k=jV=W
156 155 eleq1d k=jVW
157 156 rspccva kMNVjMNW
158 37 112 157 syl2an φjM..^NW
159 116 120 158 subdid φjM..^NBXW=BXBW
160 159 sumeq2dv φjM..^NBXW=jM..^NBXBW
161 116 158 mulcld φjM..^NBW
162 124 126 161 fsumsub φjM..^NBXBW=jM..^NBXjM..^NBW
163 160 162 eqtrd φjM..^NBXW=jM..^NBXjM..^NBW
164 163 adantr φNM+1jM..^NBXW=jM..^NBXjM..^NBW
165 153 154 164 3eqtr4d φNM+1jM..^NBX-kM+1..^NAV-DY=jM..^NBXW
166 134 137 165 3eqtrrd φNM+1jM..^NBXW=EZ-DY-jM..^NCBX
167 uzp1 NMN=MNM+1
168 5 167 syl φN=MNM+1
169 47 166 168 mpjaodan φjM..^NBXW=EZ-DY-jM..^NCBX