Metamath Proof Explorer


Theorem gsumzf1o

Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 2-Jun-2019)

Ref Expression
Hypotheses gsumzcl.b B=BaseG
gsumzcl.0 0˙=0G
gsumzcl.z Z=CntzG
gsumzcl.g φGMnd
gsumzcl.a φAV
gsumzcl.f φF:AB
gsumzcl.c φranFZranF
gsumzcl.w φfinSupp0˙F
gsumzf1o.h φH:C1-1 ontoA
Assertion gsumzf1o φGF=GFH

Proof

Step Hyp Ref Expression
1 gsumzcl.b B=BaseG
2 gsumzcl.0 0˙=0G
3 gsumzcl.z Z=CntzG
4 gsumzcl.g φGMnd
5 gsumzcl.a φAV
6 gsumzcl.f φF:AB
7 gsumzcl.c φranFZranF
8 gsumzcl.w φfinSupp0˙F
9 gsumzf1o.h φH:C1-1 ontoA
10 2 gsumz GMndAVGkA0˙=0˙
11 4 5 10 syl2anc φGkA0˙=0˙
12 f1of1 H:C1-1 ontoAH:C1-1A
13 9 12 syl φH:C1-1A
14 f1dmex H:C1-1AAVCV
15 13 5 14 syl2anc φCV
16 2 gsumz GMndCVGxC0˙=0˙
17 4 15 16 syl2anc φGxC0˙=0˙
18 11 17 eqtr4d φGkA0˙=GxC0˙
19 18 adantr φFsupp0˙=GkA0˙=GxC0˙
20 2 fvexi 0˙V
21 20 a1i φ0˙V
22 ssidd φFsupp0˙Fsupp0˙
23 6 5 21 22 gsumcllem φFsupp0˙=F=kA0˙
24 23 oveq2d φFsupp0˙=GF=GkA0˙
25 f1of H:C1-1 ontoAH:CA
26 9 25 syl φH:CA
27 26 adantr φFsupp0˙=H:CA
28 27 ffvelcdmda φFsupp0˙=xCHxA
29 27 feqmptd φFsupp0˙=H=xCHx
30 eqidd k=Hx0˙=0˙
31 28 29 23 30 fmptco φFsupp0˙=FH=xC0˙
32 31 oveq2d φFsupp0˙=GFH=GxC0˙
33 19 24 32 3eqtr4d φFsupp0˙=GF=GFH
34 33 ex φFsupp0˙=GF=GFH
35 9 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙H:C1-1 ontoA
36 f1ococnv2 H:C1-1 ontoAHH-1=IA
37 35 36 syl φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙HH-1=IA
38 37 coeq1d φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙HH-1f=IAf
39 f1of1 f:1Fsupp0˙1-1 ontoFsupp0˙f:1Fsupp0˙1-1Fsupp0˙
40 39 ad2antll φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙f:1Fsupp0˙1-1Fsupp0˙
41 suppssdm Fsupp0˙domF
42 41 6 fssdm φFsupp0˙A
43 42 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙Fsupp0˙A
44 f1ss f:1Fsupp0˙1-1Fsupp0˙Fsupp0˙Af:1Fsupp0˙1-1A
45 40 43 44 syl2anc φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙f:1Fsupp0˙1-1A
46 f1f f:1Fsupp0˙1-1Af:1Fsupp0˙A
47 fcoi2 f:1Fsupp0˙AIAf=f
48 45 46 47 3syl φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙IAf=f
49 38 48 eqtrd φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙HH-1f=f
50 coass HH-1f=HH-1f
51 49 50 eqtr3di φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙f=HH-1f
52 51 coeq2d φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙Ff=FHH-1f
53 coass FHH-1f=FHH-1f
54 52 53 eqtr4di φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙Ff=FHH-1f
55 54 seqeq3d φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙seq1+GFf=seq1+GFHH-1f
56 55 fveq1d φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙seq1+GFfFsupp0˙=seq1+GFHH-1fFsupp0˙
57 eqid +G=+G
58 4 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙GMnd
59 5 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙AV
60 6 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙F:AB
61 7 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙ranFZranF
62 simprl φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙Fsupp0˙
63 ssid Fsupp0˙Fsupp0˙
64 f1ofo f:1Fsupp0˙1-1 ontoFsupp0˙f:1Fsupp0˙ontoFsupp0˙
65 forn f:1Fsupp0˙ontoFsupp0˙ranf=Fsupp0˙
66 64 65 syl f:1Fsupp0˙1-1 ontoFsupp0˙ranf=Fsupp0˙
67 66 ad2antll φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙ranf=Fsupp0˙
68 63 67 sseqtrrid φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙Fsupp0˙ranf
69 eqid Ffsupp0˙=Ffsupp0˙
70 1 2 57 3 58 59 60 61 62 45 68 69 gsumval3 φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙GF=seq1+GFfFsupp0˙
71 15 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙CV
72 fco F:ABH:CAFH:CB
73 6 26 72 syl2anc φFH:CB
74 73 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙FH:CB
75 rncoss ranFHranF
76 3 cntzidss ranFZranFranFHranFranFHZranFH
77 7 75 76 sylancl φranFHZranFH
78 77 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙ranFHZranFH
79 f1ocnv H:C1-1 ontoAH-1:A1-1 ontoC
80 f1of1 H-1:A1-1 ontoCH-1:A1-1C
81 9 79 80 3syl φH-1:A1-1C
82 81 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙H-1:A1-1C
83 f1co H-1:A1-1Cf:1Fsupp0˙1-1AH-1f:1Fsupp0˙1-1C
84 82 45 83 syl2anc φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙H-1f:1Fsupp0˙1-1C
85 ssidd φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙Fsupp0˙Fsupp0˙
86 6 5 fexd φFV
87 suppimacnv FV0˙VFsupp0˙=F-1V0˙
88 86 20 87 sylancl φFsupp0˙=F-1V0˙
89 88 eqcomd φF-1V0˙=Fsupp0˙
90 89 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙F-1V0˙=Fsupp0˙
91 85 90 67 3sstr4d φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙F-1V0˙ranf
92 imass2 F-1V0˙ranfH-1F-1V0˙H-1ranf
93 91 92 syl φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙H-1F-1V0˙H-1ranf
94 cnvco FH-1=H-1F-1
95 94 imaeq1i FH-1V0˙=H-1F-1V0˙
96 imaco H-1F-1V0˙=H-1F-1V0˙
97 95 96 eqtri FH-1V0˙=H-1F-1V0˙
98 rnco2 ranH-1f=H-1ranf
99 93 97 98 3sstr4g φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙FH-1V0˙ranH-1f
100 f1oexrnex H:C1-1 ontoAAVHV
101 9 5 100 syl2anc φHV
102 coexg FVHVFHV
103 86 101 102 syl2anc φFHV
104 suppimacnv FHV0˙VFHsupp0˙=FH-1V0˙
105 103 20 104 sylancl φFHsupp0˙=FH-1V0˙
106 105 sseq1d φFHsupp0˙ranH-1fFH-1V0˙ranH-1f
107 106 adantr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙FHsupp0˙ranH-1fFH-1V0˙ranH-1f
108 99 107 mpbird φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙FHsupp0˙ranH-1f
109 eqid FHH-1fsupp0˙=FHH-1fsupp0˙
110 1 2 57 3 58 71 74 78 62 84 108 109 gsumval3 φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙GFH=seq1+GFHH-1fFsupp0˙
111 56 70 110 3eqtr4d φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙GF=GFH
112 111 expr φFsupp0˙f:1Fsupp0˙1-1 ontoFsupp0˙GF=GFH
113 112 exlimdv φFsupp0˙ff:1Fsupp0˙1-1 ontoFsupp0˙GF=GFH
114 113 expimpd φFsupp0˙ff:1Fsupp0˙1-1 ontoFsupp0˙GF=GFH
115 fsuppimp finSupp0˙FFunFFsupp0˙Fin
116 115 simprd finSupp0˙FFsupp0˙Fin
117 fz1f1o Fsupp0˙FinFsupp0˙=Fsupp0˙ff:1Fsupp0˙1-1 ontoFsupp0˙
118 8 116 117 3syl φFsupp0˙=Fsupp0˙ff:1Fsupp0˙1-1 ontoFsupp0˙
119 34 114 118 mpjaod φGF=GFH