Metamath Proof Explorer


Theorem harmonicbnd4

Description: The asymptotic behavior of sum_ m <_ A , 1 / m = log A + gamma + O ( 1 / A ) . (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion harmonicbnd4 A+m=1A1mlogA+γ1A

Proof

Step Hyp Ref Expression
1 fzfid A+1AFin
2 elfznn m1Am
3 2 adantl A+m1Am
4 3 nnrecred A+m1A1m
5 1 4 fsumrecl A+m=1A1m
6 5 recnd A+m=1A1m
7 relogcl A+logA
8 7 recnd A+logA
9 emre γ
10 9 a1i A+γ
11 10 recnd A+γ
12 6 8 11 subsub4d A+m=1A1m-logA-γ=m=1A1mlogA+γ
13 12 fveq2d A+m=1A1m-logA-γ=m=1A1mlogA+γ
14 rpreccl A+1A+
15 14 rpred A+1A
16 resubcl γ1Aγ1A
17 9 15 16 sylancr A+γ1A
18 rprege0 A+A0A
19 flge0nn0 A0AA0
20 18 19 syl A+A0
21 nn0p1nn A0A+1
22 20 21 syl A+A+1
23 22 nnrpd A+A+1+
24 relogcl A+1+logA+1
25 23 24 syl A+logA+1
26 5 25 resubcld A+m=1A1mlogA+1
27 5 7 resubcld A+m=1A1mlogA
28 22 nnrecred A+1A+1
29 fzfid A+1A+1Fin
30 elfznn m1A+1m
31 30 adantl A+m1A+1m
32 31 nnrecred A+m1A+11m
33 29 32 fsumrecl A+m=1A+11m
34 33 25 resubcld A+m=1A+11mlogA+1
35 harmonicbnd A+1m=1A+11mlogA+1γ1
36 22 35 syl A+m=1A+11mlogA+1γ1
37 1re 1
38 9 37 elicc2i m=1A+11mlogA+1γ1m=1A+11mlogA+1γm=1A+11mlogA+1m=1A+11mlogA+11
39 38 simp2bi m=1A+11mlogA+1γ1γm=1A+11mlogA+1
40 36 39 syl A+γm=1A+11mlogA+1
41 rpre A+A
42 fllep1 AAA+1
43 41 42 syl A+AA+1
44 rpregt0 A+A0<A
45 22 nnred A+A+1
46 22 nngt0d A+0<A+1
47 lerec A0<AA+10<A+1AA+11A+11A
48 44 45 46 47 syl12anc A+AA+11A+11A
49 43 48 mpbid A+1A+11A
50 10 28 34 15 40 49 le2subd A+γ1Am=1A+11m-logA+1-1A+1
51 33 recnd A+m=1A+11m
52 25 recnd A+logA+1
53 28 recnd A+1A+1
54 51 52 53 sub32d A+m=1A+11m-logA+1-1A+1=m=1A+11m-1A+1-logA+1
55 nnuz =1
56 22 55 eleqtrdi A+A+11
57 32 recnd A+m1A+11m
58 oveq2 m=A+11m=1A+1
59 56 57 58 fsumm1 A+m=1A+11m=m=1A+1-11m+1A+1
60 20 nn0cnd A+A
61 ax-1cn 1
62 pncan A1A+1-1=A
63 60 61 62 sylancl A+A+1-1=A
64 63 oveq2d A+1A+1-1=1A
65 64 sumeq1d A+m=1A+1-11m=m=1A1m
66 65 oveq1d A+m=1A+1-11m+1A+1=m=1A1m+1A+1
67 59 66 eqtrd A+m=1A+11m=m=1A1m+1A+1
68 6 53 67 mvrraddd A+m=1A+11m1A+1=m=1A1m
69 68 oveq1d A+m=1A+11m-1A+1-logA+1=m=1A1mlogA+1
70 54 69 eqtrd A+m=1A+11m-logA+1-1A+1=m=1A1mlogA+1
71 50 70 breqtrd A+γ1Am=1A1mlogA+1
72 logleb A+A+1+AA+1logAlogA+1
73 23 72 mpdan A+AA+1logAlogA+1
74 43 73 mpbid A+logAlogA+1
75 7 25 5 74 lesub2dd A+m=1A1mlogA+1m=1A1mlogA
76 17 26 27 71 75 letrd A+γ1Am=1A1mlogA
77 27 15 resubcld A+m=1A1m-logA-1A
78 15 recnd A+1A
79 6 8 78 subsub4d A+m=1A1m-logA-1A=m=1A1mlogA+1A
80 7 15 readdcld A+logA+1A
81 id A+A+
82 23 81 relogdivd A+logA+1A=logA+1logA
83 rerpdivcl A+1A+A+1A
84 45 83 mpancom A+A+1A
85 37 a1i A+1
86 85 15 readdcld A+1+1A
87 15 reefcld A+e1A
88 61 a1i A+1
89 rpcnne0 A+AA0
90 divdir A1AA0A+1A=AA+1A
91 60 88 89 90 syl3anc A+A+1A=AA+1A
92 reflcl AA
93 41 92 syl A+A
94 rerpdivcl AA+AA
95 93 94 mpancom A+AA
96 flle AAA
97 41 96 syl A+AA
98 rpcn A+A
99 98 mulridd A+A1=A
100 97 99 breqtrrd A+AA1
101 ledivmul A1A0<AAA1AA1
102 93 85 44 101 syl3anc A+AA1AA1
103 100 102 mpbird A+AA1
104 95 85 15 103 leadd1dd A+AA+1A1+1A
105 91 104 eqbrtrd A+A+1A1+1A
106 efgt1p 1A+1+1A<e1A
107 14 106 syl A+1+1A<e1A
108 86 87 107 ltled A+1+1Ae1A
109 84 86 87 105 108 letrd A+A+1Ae1A
110 rpdivcl A+1+A+A+1A+
111 23 110 mpancom A+A+1A+
112 15 rpefcld A+e1A+
113 111 112 logled A+A+1Ae1AlogA+1Aloge1A
114 109 113 mpbid A+logA+1Aloge1A
115 15 relogefd A+loge1A=1A
116 114 115 breqtrd A+logA+1A1A
117 82 116 eqbrtrrd A+logA+1logA1A
118 25 7 15 lesubadd2d A+logA+1logA1AlogA+1logA+1A
119 117 118 mpbid A+logA+1logA+1A
120 25 80 5 119 lesub2dd A+m=1A1mlogA+1Am=1A1mlogA+1
121 79 120 eqbrtrd A+m=1A1m-logA-1Am=1A1mlogA+1
122 harmonicbnd3 A0m=1A1mlogA+10γ
123 20 122 syl A+m=1A1mlogA+10γ
124 0re 0
125 124 9 elicc2i m=1A1mlogA+10γm=1A1mlogA+10m=1A1mlogA+1m=1A1mlogA+1γ
126 125 simp3bi m=1A1mlogA+10γm=1A1mlogA+1γ
127 123 126 syl A+m=1A1mlogA+1γ
128 77 26 10 121 127 letrd A+m=1A1m-logA-1Aγ
129 27 15 10 lesubaddd A+m=1A1m-logA-1Aγm=1A1mlogAγ+1A
130 128 129 mpbid A+m=1A1mlogAγ+1A
131 27 10 15 absdifled A+m=1A1m-logA-γ1Aγ1Am=1A1mlogAm=1A1mlogAγ+1A
132 76 130 131 mpbir2and A+m=1A1m-logA-γ1A
133 13 132 eqbrtrrd A+m=1A1mlogA+γ1A