Metamath Proof Explorer


Theorem hbtlem4

Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses hbtlem.p P=Poly1R
hbtlem.u U=LIdealP
hbtlem.s S=ldgIdlSeqR
hbtlem4.r φRRing
hbtlem4.i φIU
hbtlem4.x φX0
hbtlem4.y φY0
hbtlem4.xy φXY
Assertion hbtlem4 φSIXSIY

Proof

Step Hyp Ref Expression
1 hbtlem.p P=Poly1R
2 hbtlem.u U=LIdealP
3 hbtlem.s S=ldgIdlSeqR
4 hbtlem4.r φRRing
5 hbtlem4.i φIU
6 hbtlem4.x φX0
7 hbtlem4.y φY0
8 hbtlem4.xy φXY
9 4 ad2antrr φcIdeg1RcXRRing
10 1 ply1ring RRingPRing
11 9 10 syl φcIdeg1RcXPRing
12 5 ad2antrr φcIdeg1RcXIU
13 eqid mulGrpP=mulGrpP
14 eqid BaseP=BaseP
15 13 14 mgpbas BaseP=BasemulGrpP
16 eqid mulGrpP=mulGrpP
17 13 ringmgp PRingmulGrpPMnd
18 11 17 syl φcIdeg1RcXmulGrpPMnd
19 6 ad2antrr φcIdeg1RcXX0
20 7 ad2antrr φcIdeg1RcXY0
21 8 ad2antrr φcIdeg1RcXXY
22 nn0sub2 X0Y0XYYX0
23 19 20 21 22 syl3anc φcIdeg1RcXYX0
24 eqid var1R=var1R
25 24 1 14 vr1cl RRingvar1RBaseP
26 9 25 syl φcIdeg1RcXvar1RBaseP
27 15 16 18 23 26 mulgnn0cld φcIdeg1RcXYXmulGrpPvar1RBaseP
28 simplr φcIdeg1RcXcI
29 eqid P=P
30 2 14 29 lidlmcl PRingIUYXmulGrpPvar1RBasePcIYXmulGrpPvar1RPcI
31 11 12 27 28 30 syl22anc φcIdeg1RcXYXmulGrpPvar1RPcI
32 eqid deg1R=deg1R
33 14 2 lidlss IUIBaseP
34 12 33 syl φcIdeg1RcXIBaseP
35 34 28 sseldd φcIdeg1RcXcBaseP
36 32 1 24 13 16 deg1pwle RRingYX0deg1RYXmulGrpPvar1RYX
37 9 23 36 syl2anc φcIdeg1RcXdeg1RYXmulGrpPvar1RYX
38 simpr φcIdeg1RcXdeg1RcX
39 1 32 9 14 29 27 35 23 19 37 38 deg1mulle2 φcIdeg1RcXdeg1RYXmulGrpPvar1RPcY-X+X
40 20 nn0cnd φcIdeg1RcXY
41 19 nn0cnd φcIdeg1RcXX
42 40 41 npcand φcIdeg1RcXY-X+X=Y
43 39 42 breqtrd φcIdeg1RcXdeg1RYXmulGrpPvar1RPcY
44 eqid 0R=0R
45 44 1 24 13 16 14 29 9 35 23 19 coe1pwmulfv φcIdeg1RcXcoe1YXmulGrpPvar1RPcY-X+X=coe1cX
46 42 fveq2d φcIdeg1RcXcoe1YXmulGrpPvar1RPcY-X+X=coe1YXmulGrpPvar1RPcY
47 45 46 eqtr3d φcIdeg1RcXcoe1cX=coe1YXmulGrpPvar1RPcY
48 fveq2 b=YXmulGrpPvar1RPcdeg1Rb=deg1RYXmulGrpPvar1RPc
49 48 breq1d b=YXmulGrpPvar1RPcdeg1RbYdeg1RYXmulGrpPvar1RPcY
50 fveq2 b=YXmulGrpPvar1RPccoe1b=coe1YXmulGrpPvar1RPc
51 50 fveq1d b=YXmulGrpPvar1RPccoe1bY=coe1YXmulGrpPvar1RPcY
52 51 eqeq2d b=YXmulGrpPvar1RPccoe1cX=coe1bYcoe1cX=coe1YXmulGrpPvar1RPcY
53 49 52 anbi12d b=YXmulGrpPvar1RPcdeg1RbYcoe1cX=coe1bYdeg1RYXmulGrpPvar1RPcYcoe1cX=coe1YXmulGrpPvar1RPcY
54 53 rspcev YXmulGrpPvar1RPcIdeg1RYXmulGrpPvar1RPcYcoe1cX=coe1YXmulGrpPvar1RPcYbIdeg1RbYcoe1cX=coe1bY
55 31 43 47 54 syl12anc φcIdeg1RcXbIdeg1RbYcoe1cX=coe1bY
56 eqeq1 a=coe1cXa=coe1bYcoe1cX=coe1bY
57 56 anbi2d a=coe1cXdeg1RbYa=coe1bYdeg1RbYcoe1cX=coe1bY
58 57 rexbidv a=coe1cXbIdeg1RbYa=coe1bYbIdeg1RbYcoe1cX=coe1bY
59 55 58 syl5ibrcom φcIdeg1RcXa=coe1cXbIdeg1RbYa=coe1bY
60 59 expimpd φcIdeg1RcXa=coe1cXbIdeg1RbYa=coe1bY
61 60 rexlimdva φcIdeg1RcXa=coe1cXbIdeg1RbYa=coe1bY
62 61 ss2abdv φa|cIdeg1RcXa=coe1cXa|bIdeg1RbYa=coe1bY
63 1 2 3 32 hbtlem1 RRingIUX0SIX=a|cIdeg1RcXa=coe1cX
64 4 5 6 63 syl3anc φSIX=a|cIdeg1RcXa=coe1cX
65 1 2 3 32 hbtlem1 RRingIUY0SIY=a|bIdeg1RbYa=coe1bY
66 4 5 7 65 syl3anc φSIY=a|bIdeg1RbYa=coe1bY
67 62 64 66 3sstr4d φSIXSIY