Metamath Proof Explorer


Theorem hdmap11lem1

Description: Lemma for hdmapadd . (Contributed by NM, 26-May-2015)

Ref Expression
Hypotheses hdmap11.h H=LHypK
hdmap11.u U=DVecHKW
hdmap11.v V=BaseU
hdmap11.p +˙=+U
hdmap11.c C=LCDualKW
hdmap11.a ˙=+C
hdmap11.s S=HDMapKW
hdmap11.k φKHLWH
hdmap11.x φXV
hdmap11.y φYV
hdmap11.e E=IBaseKILTrnKW
hdmap11.o 0˙=0U
hdmap11.n N=LSpanU
hdmap11.d D=BaseC
hdmap11.l L=LSpanC
hdmap11.m M=mapdKW
hdmap11.j J=HVMapKW
hdmap11.i I=HDMap1KW
hdmap11lem0.1a φzV
hdmap11lem0.6 φ¬zNXY
hdmap11lem0.2a φNzNE
Assertion hdmap11lem1 φSX+˙Y=SX˙SY

Proof

Step Hyp Ref Expression
1 hdmap11.h H=LHypK
2 hdmap11.u U=DVecHKW
3 hdmap11.v V=BaseU
4 hdmap11.p +˙=+U
5 hdmap11.c C=LCDualKW
6 hdmap11.a ˙=+C
7 hdmap11.s S=HDMapKW
8 hdmap11.k φKHLWH
9 hdmap11.x φXV
10 hdmap11.y φYV
11 hdmap11.e E=IBaseKILTrnKW
12 hdmap11.o 0˙=0U
13 hdmap11.n N=LSpanU
14 hdmap11.d D=BaseC
15 hdmap11.l L=LSpanC
16 hdmap11.m M=mapdKW
17 hdmap11.j J=HVMapKW
18 hdmap11.i I=HDMap1KW
19 hdmap11lem0.1a φzV
20 hdmap11lem0.6 φ¬zNXY
21 hdmap11lem0.2a φNzNE
22 eqid 0C=0C
23 eqid BaseK=BaseK
24 eqid LTrnKW=LTrnKW
25 1 23 24 2 3 12 11 8 dvheveccl φEV0˙
26 1 2 3 12 5 14 22 17 8 25 hvmapcl2 φJED0C
27 26 eldifad φJED
28 1 2 3 12 13 5 15 16 17 8 25 mapdhvmap φMNE=LJE
29 21 necomd φNENz
30 1 2 3 12 13 5 14 15 16 18 8 27 28 29 25 19 hdmap1cl φIEJEzD
31 eqid LSubSpU=LSubSpU
32 1 2 8 dvhlmod φULMod
33 3 31 13 32 9 10 lspprcl φNXYLSubSpU
34 12 31 32 33 19 20 lssneln0 φzV0˙
35 eqidd φIEJEz=IEJEz
36 eqid -U=-U
37 eqid -C=-C
38 1 2 3 36 12 13 5 14 37 15 16 18 8 25 27 34 30 29 28 hdmap1eq φIEJEz=IEJEzMNz=LIEJEzMNE-Uz=LJE-CIEJEz
39 35 38 mpbid φMNz=LIEJEzMNE-Uz=LJE-CIEJEz
40 39 simpld φMNz=LIEJEz
41 1 2 3 4 12 13 5 14 6 15 16 18 8 30 34 9 10 20 40 hdmap1l6 φIzIEJEzX+˙Y=IzIEJEzX˙IzIEJEzY
42 3 4 lmodvacl ULModXVYVX+˙YV
43 32 9 10 42 syl3anc φX+˙YV
44 1 2 8 dvhlvec φULVec
45 25 eldifad φEV
46 3 4 13 32 9 10 lspprvacl φX+˙YNXY
47 31 13 32 33 46 lspsnel5a φNX+˙YNXY
48 47 20 ssneldd φ¬zNX+˙Y
49 3 13 32 19 43 48 lspsnne2 φNzNX+˙Y
50 3 13 12 44 45 43 34 21 49 hdmaplem4 φ¬zNENX+˙Y
51 1 11 2 3 13 5 14 17 18 7 8 43 19 50 hdmapval2 φSX+˙Y=IzIEJEzX+˙Y
52 3 13 44 19 9 10 20 lspindpi φNzNXNzNY
53 52 simpld φNzNX
54 3 13 12 44 45 9 34 21 53 hdmaplem4 φ¬zNENX
55 1 11 2 3 13 5 14 17 18 7 8 9 19 54 hdmapval2 φSX=IzIEJEzX
56 52 simprd φNzNY
57 3 13 12 44 45 10 34 21 56 hdmaplem4 φ¬zNENY
58 1 11 2 3 13 5 14 17 18 7 8 10 19 57 hdmapval2 φSY=IzIEJEzY
59 55 58 oveq12d φSX˙SY=IzIEJEzX˙IzIEJEzY
60 41 51 59 3eqtr4d φSX+˙Y=SX˙SY