Description: Heron's formula gives the area of a triangle given only the side lengths. If points A, B, C form a triangle, then the area of the triangle, represented here as ( 1 / 2 ) x. X x. Y x. abs ( sin O ) , is equal to the square root of S x. ( S - X ) x. ( S - Y ) x. ( S - Z ) , where S = ( X + Y + Z ) / 2 is half the perimeter of the triangle. Based on work by Jon Pennant. This is Metamath 100 proof #57. (Contributed by Mario Carneiro, 10-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | heron.f | |
|
heron.x | |
||
heron.y | |
||
heron.z | |
||
heron.o | |
||
heron.s | |
||
heron.a | |
||
heron.b | |
||
heron.c | |
||
heron.ac | |
||
heron.bc | |
||
Assertion | heron | |