| Step |
Hyp |
Ref |
Expression |
| 1 |
|
htpyco1.n |
|
| 2 |
|
htpyco1.j |
|
| 3 |
|
htpyco1.p |
|
| 4 |
|
htpyco1.f |
|
| 5 |
|
htpyco1.g |
|
| 6 |
|
htpyco1.h |
|
| 7 |
|
cnco |
|
| 8 |
3 4 7
|
syl2anc |
|
| 9 |
|
cnco |
|
| 10 |
3 5 9
|
syl2anc |
|
| 11 |
|
iitopon |
|
| 12 |
11
|
a1i |
|
| 13 |
2 12
|
cnmpt1st |
|
| 14 |
2 12 13 3
|
cnmpt21f |
|
| 15 |
2 12
|
cnmpt2nd |
|
| 16 |
|
cntop2 |
|
| 17 |
3 16
|
syl |
|
| 18 |
|
toptopon2 |
|
| 19 |
17 18
|
sylib |
|
| 20 |
19 4 5
|
htpycn |
|
| 21 |
20 6
|
sseldd |
|
| 22 |
2 12 14 15 21
|
cnmpt22f |
|
| 23 |
1 22
|
eqeltrid |
|
| 24 |
|
cnf2 |
|
| 25 |
2 19 3 24
|
syl3anc |
|
| 26 |
25
|
ffvelcdmda |
|
| 27 |
19 4 5 6
|
htpyi |
|
| 28 |
26 27
|
syldan |
|
| 29 |
28
|
simpld |
|
| 30 |
|
simpr |
|
| 31 |
|
0elunit |
|
| 32 |
|
fveq2 |
|
| 33 |
|
id |
|
| 34 |
32 33
|
oveqan12d |
|
| 35 |
|
ovex |
|
| 36 |
34 1 35
|
ovmpoa |
|
| 37 |
30 31 36
|
sylancl |
|
| 38 |
|
fvco3 |
|
| 39 |
25 38
|
sylan |
|
| 40 |
29 37 39
|
3eqtr4d |
|
| 41 |
28
|
simprd |
|
| 42 |
|
1elunit |
|
| 43 |
|
id |
|
| 44 |
32 43
|
oveqan12d |
|
| 45 |
|
ovex |
|
| 46 |
44 1 45
|
ovmpoa |
|
| 47 |
30 42 46
|
sylancl |
|
| 48 |
|
fvco3 |
|
| 49 |
25 48
|
sylan |
|
| 50 |
41 47 49
|
3eqtr4d |
|
| 51 |
2 8 10 23 40 50
|
ishtpyd |
|