Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | htpyco1.n | |
|
htpyco1.j | |
||
htpyco1.p | |
||
htpyco1.f | |
||
htpyco1.g | |
||
htpyco1.h | |
||
Assertion | htpyco1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyco1.n | |
|
2 | htpyco1.j | |
|
3 | htpyco1.p | |
|
4 | htpyco1.f | |
|
5 | htpyco1.g | |
|
6 | htpyco1.h | |
|
7 | cnco | |
|
8 | 3 4 7 | syl2anc | |
9 | cnco | |
|
10 | 3 5 9 | syl2anc | |
11 | iitopon | |
|
12 | 11 | a1i | |
13 | 2 12 | cnmpt1st | |
14 | 2 12 13 3 | cnmpt21f | |
15 | 2 12 | cnmpt2nd | |
16 | cntop2 | |
|
17 | 3 16 | syl | |
18 | toptopon2 | |
|
19 | 17 18 | sylib | |
20 | 19 4 5 | htpycn | |
21 | 20 6 | sseldd | |
22 | 2 12 14 15 21 | cnmpt22f | |
23 | 1 22 | eqeltrid | |
24 | cnf2 | |
|
25 | 2 19 3 24 | syl3anc | |
26 | 25 | ffvelcdmda | |
27 | 19 4 5 6 | htpyi | |
28 | 26 27 | syldan | |
29 | 28 | simpld | |
30 | simpr | |
|
31 | 0elunit | |
|
32 | fveq2 | |
|
33 | id | |
|
34 | 32 33 | oveqan12d | |
35 | ovex | |
|
36 | 34 1 35 | ovmpoa | |
37 | 30 31 36 | sylancl | |
38 | fvco3 | |
|
39 | 25 38 | sylan | |
40 | 29 37 39 | 3eqtr4d | |
41 | 28 | simprd | |
42 | 1elunit | |
|
43 | id | |
|
44 | 32 43 | oveqan12d | |
45 | ovex | |
|
46 | 44 1 45 | ovmpoa | |
47 | 30 42 46 | sylancl | |
48 | fvco3 | |
|
49 | 25 48 | sylan | |
50 | 41 47 49 | 3eqtr4d | |
51 | 2 8 10 23 40 50 | ishtpyd | |