Metamath Proof Explorer


Theorem htpyco1

Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses htpyco1.n N=xX,y01PxHy
htpyco1.j φJTopOnX
htpyco1.p φPJCnK
htpyco1.f φFKCnL
htpyco1.g φGKCnL
htpyco1.h φHFKHtpyLG
Assertion htpyco1 φNFPJHtpyLGP

Proof

Step Hyp Ref Expression
1 htpyco1.n N=xX,y01PxHy
2 htpyco1.j φJTopOnX
3 htpyco1.p φPJCnK
4 htpyco1.f φFKCnL
5 htpyco1.g φGKCnL
6 htpyco1.h φHFKHtpyLG
7 cnco PJCnKFKCnLFPJCnL
8 3 4 7 syl2anc φFPJCnL
9 cnco PJCnKGKCnLGPJCnL
10 3 5 9 syl2anc φGPJCnL
11 iitopon IITopOn01
12 11 a1i φIITopOn01
13 2 12 cnmpt1st φxX,y01xJ×tIICnJ
14 2 12 13 3 cnmpt21f φxX,y01PxJ×tIICnK
15 2 12 cnmpt2nd φxX,y01yJ×tIICnII
16 cntop2 PJCnKKTop
17 3 16 syl φKTop
18 toptopon2 KTopKTopOnK
19 17 18 sylib φKTopOnK
20 19 4 5 htpycn φFKHtpyLGK×tIICnL
21 20 6 sseldd φHK×tIICnL
22 2 12 14 15 21 cnmpt22f φxX,y01PxHyJ×tIICnL
23 1 22 eqeltrid φNJ×tIICnL
24 cnf2 JTopOnXKTopOnKPJCnKP:XK
25 2 19 3 24 syl3anc φP:XK
26 25 ffvelcdmda φsXPsK
27 19 4 5 6 htpyi φPsKPsH0=FPsPsH1=GPs
28 26 27 syldan φsXPsH0=FPsPsH1=GPs
29 28 simpld φsXPsH0=FPs
30 simpr φsXsX
31 0elunit 001
32 fveq2 x=sPx=Ps
33 id y=0y=0
34 32 33 oveqan12d x=sy=0PxHy=PsH0
35 ovex PsH0V
36 34 1 35 ovmpoa sX001sN0=PsH0
37 30 31 36 sylancl φsXsN0=PsH0
38 fvco3 P:XKsXFPs=FPs
39 25 38 sylan φsXFPs=FPs
40 29 37 39 3eqtr4d φsXsN0=FPs
41 28 simprd φsXPsH1=GPs
42 1elunit 101
43 id y=1y=1
44 32 43 oveqan12d x=sy=1PxHy=PsH1
45 ovex PsH1V
46 44 1 45 ovmpoa sX101sN1=PsH1
47 30 42 46 sylancl φsXsN1=PsH1
48 fvco3 P:XKsXGPs=GPs
49 25 48 sylan φsXGPs=GPs
50 41 47 49 3eqtr4d φsXsN1=GPs
51 2 8 10 23 40 50 ishtpyd φNFPJHtpyLGP