Metamath Proof Explorer


Theorem i1fmullem

Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
Assertion i1fmullem φA0F×fG-1A=yranG0F-1AyG-1y

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 i1ff Fdom1F:
4 1 3 syl φF:
5 4 ffnd φFFn
6 i1ff Gdom1G:
7 2 6 syl φG:
8 7 ffnd φGFn
9 reex V
10 9 a1i φV
11 inidm =
12 5 8 10 10 11 offn φF×fGFn
13 12 adantr φA0F×fGFn
14 fniniseg F×fGFnzF×fG-1AzF×fGz=A
15 13 14 syl φA0zF×fG-1AzF×fGz=A
16 5 adantr φA0FFn
17 8 adantr φA0GFn
18 9 a1i φA0V
19 eqidd φA0zFz=Fz
20 eqidd φA0zGz=Gz
21 16 17 18 18 11 19 20 ofval φA0zF×fGz=FzGz
22 21 eqeq1d φA0zF×fGz=AFzGz=A
23 22 pm5.32da φA0zF×fGz=AzFzGz=A
24 8 ad2antrr φA0zFzGz=AGFn
25 simprl φA0zFzGz=Az
26 fnfvelrn GFnzGzranG
27 24 25 26 syl2anc φA0zFzGz=AGzranG
28 eldifsni A0A0
29 28 ad2antlr φA0zFzGz=AA0
30 simprr φA0zFzGz=AFzGz=A
31 4 ad2antrr φA0zFzGz=AF:
32 31 25 ffvelcdmd φA0zFzGz=AFz
33 32 recnd φA0zFzGz=AFz
34 33 mul01d φA0zFzGz=AFz0=0
35 29 30 34 3netr4d φA0zFzGz=AFzGzFz0
36 oveq2 Gz=0FzGz=Fz0
37 36 necon3i FzGzFz0Gz0
38 35 37 syl φA0zFzGz=AGz0
39 eldifsn GzranG0GzranGGz0
40 27 38 39 sylanbrc φA0zFzGz=AGzranG0
41 7 ad2antrr φA0zFzGz=AG:
42 41 25 ffvelcdmd φA0zFzGz=AGz
43 42 recnd φA0zFzGz=AGz
44 33 43 38 divcan4d φA0zFzGz=AFzGzGz=Fz
45 30 oveq1d φA0zFzGz=AFzGzGz=AGz
46 44 45 eqtr3d φA0zFzGz=AFz=AGz
47 31 ffnd φA0zFzGz=AFFn
48 fniniseg FFnzF-1AGzzFz=AGz
49 47 48 syl φA0zFzGz=AzF-1AGzzFz=AGz
50 25 46 49 mpbir2and φA0zFzGz=AzF-1AGz
51 eqidd φA0zFzGz=AGz=Gz
52 fniniseg GFnzG-1GzzGz=Gz
53 24 52 syl φA0zFzGz=AzG-1GzzGz=Gz
54 25 51 53 mpbir2and φA0zFzGz=AzG-1Gz
55 50 54 elind φA0zFzGz=AzF-1AGzG-1Gz
56 oveq2 y=GzAy=AGz
57 56 sneqd y=GzAy=AGz
58 57 imaeq2d y=GzF-1Ay=F-1AGz
59 sneq y=Gzy=Gz
60 59 imaeq2d y=GzG-1y=G-1Gz
61 58 60 ineq12d y=GzF-1AyG-1y=F-1AGzG-1Gz
62 61 eleq2d y=GzzF-1AyG-1yzF-1AGzG-1Gz
63 62 rspcev GzranG0zF-1AGzG-1GzyranG0zF-1AyG-1y
64 40 55 63 syl2anc φA0zFzGz=AyranG0zF-1AyG-1y
65 64 ex φA0zFzGz=AyranG0zF-1AyG-1y
66 fniniseg FFnzF-1AyzFz=Ay
67 16 66 syl φA0zF-1AyzFz=Ay
68 fniniseg GFnzG-1yzGz=y
69 17 68 syl φA0zG-1yzGz=y
70 67 69 anbi12d φA0zF-1AyzG-1yzFz=AyzGz=y
71 elin zF-1AyG-1yzF-1AyzG-1y
72 anandi zFz=AyGz=yzFz=AyzGz=y
73 70 71 72 3bitr4g φA0zF-1AyG-1yzFz=AyGz=y
74 73 adantr φA0yranG0zF-1AyG-1yzFz=AyGz=y
75 eldifi A0A
76 75 ad2antlr φA0yranG0zA
77 7 ad2antrr φA0yranG0zG:
78 77 frnd φA0yranG0zranG
79 simprl φA0yranG0zyranG0
80 eldifsn yranG0yranGy0
81 79 80 sylib φA0yranG0zyranGy0
82 81 simpld φA0yranG0zyranG
83 78 82 sseldd φA0yranG0zy
84 83 recnd φA0yranG0zy
85 81 simprd φA0yranG0zy0
86 76 84 85 divcan1d φA0yranG0zAyy=A
87 oveq12 Fz=AyGz=yFzGz=Ayy
88 87 eqeq1d Fz=AyGz=yFzGz=AAyy=A
89 86 88 syl5ibrcom φA0yranG0zFz=AyGz=yFzGz=A
90 89 anassrs φA0yranG0zFz=AyGz=yFzGz=A
91 90 imdistanda φA0yranG0zFz=AyGz=yzFzGz=A
92 74 91 sylbid φA0yranG0zF-1AyG-1yzFzGz=A
93 92 rexlimdva φA0yranG0zF-1AyG-1yzFzGz=A
94 65 93 impbid φA0zFzGz=AyranG0zF-1AyG-1y
95 15 23 94 3bitrd φA0zF×fG-1AyranG0zF-1AyG-1y
96 eliun zyranG0F-1AyG-1yyranG0zF-1AyG-1y
97 95 96 bitr4di φA0zF×fG-1AzyranG0F-1AyG-1y
98 97 eqrdv φA0F×fG-1A=yranG0F-1AyG-1y