Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
i1fmullem
Next ⟩
i1fadd
Metamath Proof Explorer
Ascii
Unicode
Theorem
i1fmullem
Description:
Decompose the preimage of a product.
(Contributed by
Mario Carneiro
, 19-Jun-2014)
Ref
Expression
Hypotheses
i1fadd.1
⊢
φ
→
F
∈
dom
∫
1
i1fadd.2
⊢
φ
→
G
∈
dom
∫
1
Assertion
i1fmullem
⊢
φ
∧
A
∈
ℂ
∖
0
→
F
×
f
G
-1
A
=
⋃
y
∈
ran
G
∖
0
F
-1
A
y
∩
G
-1
y
Proof
Step
Hyp
Ref
Expression
1
i1fadd.1
⊢
φ
→
F
∈
dom
∫
1
2
i1fadd.2
⊢
φ
→
G
∈
dom
∫
1
3
i1ff
⊢
F
∈
dom
∫
1
→
F
:
ℝ
⟶
ℝ
4
1
3
syl
⊢
φ
→
F
:
ℝ
⟶
ℝ
5
4
ffnd
⊢
φ
→
F
Fn
ℝ
6
i1ff
⊢
G
∈
dom
∫
1
→
G
:
ℝ
⟶
ℝ
7
2
6
syl
⊢
φ
→
G
:
ℝ
⟶
ℝ
8
7
ffnd
⊢
φ
→
G
Fn
ℝ
9
reex
⊢
ℝ
∈
V
10
9
a1i
⊢
φ
→
ℝ
∈
V
11
inidm
⊢
ℝ
∩
ℝ
=
ℝ
12
5
8
10
10
11
offn
⊢
φ
→
F
×
f
G
Fn
ℝ
13
12
adantr
⊢
φ
∧
A
∈
ℂ
∖
0
→
F
×
f
G
Fn
ℝ
14
fniniseg
⊢
F
×
f
G
Fn
ℝ
→
z
∈
F
×
f
G
-1
A
↔
z
∈
ℝ
∧
F
×
f
G
z
=
A
15
13
14
syl
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
F
×
f
G
-1
A
↔
z
∈
ℝ
∧
F
×
f
G
z
=
A
16
5
adantr
⊢
φ
∧
A
∈
ℂ
∖
0
→
F
Fn
ℝ
17
8
adantr
⊢
φ
∧
A
∈
ℂ
∖
0
→
G
Fn
ℝ
18
9
a1i
⊢
φ
∧
A
∈
ℂ
∖
0
→
ℝ
∈
V
19
eqidd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
→
F
z
=
F
z
20
eqidd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
→
G
z
=
G
z
21
16
17
18
18
11
19
20
ofval
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
→
F
×
f
G
z
=
F
z
G
z
22
21
eqeq1d
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
→
F
×
f
G
z
=
A
↔
F
z
G
z
=
A
23
22
pm5.32da
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
ℝ
∧
F
×
f
G
z
=
A
↔
z
∈
ℝ
∧
F
z
G
z
=
A
24
8
ad2antrr
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
G
Fn
ℝ
25
simprl
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
z
∈
ℝ
26
fnfvelrn
⊢
G
Fn
ℝ
∧
z
∈
ℝ
→
G
z
∈
ran
G
27
24
25
26
syl2anc
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
G
z
∈
ran
G
28
eldifsni
⊢
A
∈
ℂ
∖
0
→
A
≠
0
29
28
ad2antlr
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
A
≠
0
30
simprr
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
z
G
z
=
A
31
4
ad2antrr
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
:
ℝ
⟶
ℝ
32
31
25
ffvelcdmd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
z
∈
ℝ
33
32
recnd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
z
∈
ℂ
34
33
mul01d
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
z
⋅
0
=
0
35
29
30
34
3netr4d
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
z
G
z
≠
F
z
⋅
0
36
oveq2
⊢
G
z
=
0
→
F
z
G
z
=
F
z
⋅
0
37
36
necon3i
⊢
F
z
G
z
≠
F
z
⋅
0
→
G
z
≠
0
38
35
37
syl
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
G
z
≠
0
39
eldifsn
⊢
G
z
∈
ran
G
∖
0
↔
G
z
∈
ran
G
∧
G
z
≠
0
40
27
38
39
sylanbrc
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
G
z
∈
ran
G
∖
0
41
7
ad2antrr
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
G
:
ℝ
⟶
ℝ
42
41
25
ffvelcdmd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
G
z
∈
ℝ
43
42
recnd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
G
z
∈
ℂ
44
33
43
38
divcan4d
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
z
G
z
G
z
=
F
z
45
30
oveq1d
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
z
G
z
G
z
=
A
G
z
46
44
45
eqtr3d
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
z
=
A
G
z
47
31
ffnd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
F
Fn
ℝ
48
fniniseg
⊢
F
Fn
ℝ
→
z
∈
F
-1
A
G
z
↔
z
∈
ℝ
∧
F
z
=
A
G
z
49
47
48
syl
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
z
∈
F
-1
A
G
z
↔
z
∈
ℝ
∧
F
z
=
A
G
z
50
25
46
49
mpbir2and
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
z
∈
F
-1
A
G
z
51
eqidd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
G
z
=
G
z
52
fniniseg
⊢
G
Fn
ℝ
→
z
∈
G
-1
G
z
↔
z
∈
ℝ
∧
G
z
=
G
z
53
24
52
syl
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
z
∈
G
-1
G
z
↔
z
∈
ℝ
∧
G
z
=
G
z
54
25
51
53
mpbir2and
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
z
∈
G
-1
G
z
55
50
54
elind
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
z
∈
F
-1
A
G
z
∩
G
-1
G
z
56
oveq2
⊢
y
=
G
z
→
A
y
=
A
G
z
57
56
sneqd
⊢
y
=
G
z
→
A
y
=
A
G
z
58
57
imaeq2d
⊢
y
=
G
z
→
F
-1
A
y
=
F
-1
A
G
z
59
sneq
⊢
y
=
G
z
→
y
=
G
z
60
59
imaeq2d
⊢
y
=
G
z
→
G
-1
y
=
G
-1
G
z
61
58
60
ineq12d
⊢
y
=
G
z
→
F
-1
A
y
∩
G
-1
y
=
F
-1
A
G
z
∩
G
-1
G
z
62
61
eleq2d
⊢
y
=
G
z
→
z
∈
F
-1
A
y
∩
G
-1
y
↔
z
∈
F
-1
A
G
z
∩
G
-1
G
z
63
62
rspcev
⊢
G
z
∈
ran
G
∖
0
∧
z
∈
F
-1
A
G
z
∩
G
-1
G
z
→
∃
y
∈
ran
G
∖
0
z
∈
F
-1
A
y
∩
G
-1
y
64
40
55
63
syl2anc
⊢
φ
∧
A
∈
ℂ
∖
0
∧
z
∈
ℝ
∧
F
z
G
z
=
A
→
∃
y
∈
ran
G
∖
0
z
∈
F
-1
A
y
∩
G
-1
y
65
64
ex
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
ℝ
∧
F
z
G
z
=
A
→
∃
y
∈
ran
G
∖
0
z
∈
F
-1
A
y
∩
G
-1
y
66
fniniseg
⊢
F
Fn
ℝ
→
z
∈
F
-1
A
y
↔
z
∈
ℝ
∧
F
z
=
A
y
67
16
66
syl
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
F
-1
A
y
↔
z
∈
ℝ
∧
F
z
=
A
y
68
fniniseg
⊢
G
Fn
ℝ
→
z
∈
G
-1
y
↔
z
∈
ℝ
∧
G
z
=
y
69
17
68
syl
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
G
-1
y
↔
z
∈
ℝ
∧
G
z
=
y
70
67
69
anbi12d
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
F
-1
A
y
∧
z
∈
G
-1
y
↔
z
∈
ℝ
∧
F
z
=
A
y
∧
z
∈
ℝ
∧
G
z
=
y
71
elin
⊢
z
∈
F
-1
A
y
∩
G
-1
y
↔
z
∈
F
-1
A
y
∧
z
∈
G
-1
y
72
anandi
⊢
z
∈
ℝ
∧
F
z
=
A
y
∧
G
z
=
y
↔
z
∈
ℝ
∧
F
z
=
A
y
∧
z
∈
ℝ
∧
G
z
=
y
73
70
71
72
3bitr4g
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
F
-1
A
y
∩
G
-1
y
↔
z
∈
ℝ
∧
F
z
=
A
y
∧
G
z
=
y
74
73
adantr
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
→
z
∈
F
-1
A
y
∩
G
-1
y
↔
z
∈
ℝ
∧
F
z
=
A
y
∧
G
z
=
y
75
eldifi
⊢
A
∈
ℂ
∖
0
→
A
∈
ℂ
76
75
ad2antlr
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
A
∈
ℂ
77
7
ad2antrr
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
G
:
ℝ
⟶
ℝ
78
77
frnd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
ran
G
⊆
ℝ
79
simprl
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
y
∈
ran
G
∖
0
80
eldifsn
⊢
y
∈
ran
G
∖
0
↔
y
∈
ran
G
∧
y
≠
0
81
79
80
sylib
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
y
∈
ran
G
∧
y
≠
0
82
81
simpld
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
y
∈
ran
G
83
78
82
sseldd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
y
∈
ℝ
84
83
recnd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
y
∈
ℂ
85
81
simprd
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
y
≠
0
86
76
84
85
divcan1d
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
A
y
y
=
A
87
oveq12
⊢
F
z
=
A
y
∧
G
z
=
y
→
F
z
G
z
=
A
y
y
88
87
eqeq1d
⊢
F
z
=
A
y
∧
G
z
=
y
→
F
z
G
z
=
A
↔
A
y
y
=
A
89
86
88
syl5ibrcom
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
F
z
=
A
y
∧
G
z
=
y
→
F
z
G
z
=
A
90
89
anassrs
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
∧
z
∈
ℝ
→
F
z
=
A
y
∧
G
z
=
y
→
F
z
G
z
=
A
91
90
imdistanda
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
→
z
∈
ℝ
∧
F
z
=
A
y
∧
G
z
=
y
→
z
∈
ℝ
∧
F
z
G
z
=
A
92
74
91
sylbid
⊢
φ
∧
A
∈
ℂ
∖
0
∧
y
∈
ran
G
∖
0
→
z
∈
F
-1
A
y
∩
G
-1
y
→
z
∈
ℝ
∧
F
z
G
z
=
A
93
92
rexlimdva
⊢
φ
∧
A
∈
ℂ
∖
0
→
∃
y
∈
ran
G
∖
0
z
∈
F
-1
A
y
∩
G
-1
y
→
z
∈
ℝ
∧
F
z
G
z
=
A
94
65
93
impbid
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
ℝ
∧
F
z
G
z
=
A
↔
∃
y
∈
ran
G
∖
0
z
∈
F
-1
A
y
∩
G
-1
y
95
15
23
94
3bitrd
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
F
×
f
G
-1
A
↔
∃
y
∈
ran
G
∖
0
z
∈
F
-1
A
y
∩
G
-1
y
96
eliun
⊢
z
∈
⋃
y
∈
ran
G
∖
0
F
-1
A
y
∩
G
-1
y
↔
∃
y
∈
ran
G
∖
0
z
∈
F
-1
A
y
∩
G
-1
y
97
95
96
bitr4di
⊢
φ
∧
A
∈
ℂ
∖
0
→
z
∈
F
×
f
G
-1
A
↔
z
∈
⋃
y
∈
ran
G
∖
0
F
-1
A
y
∩
G
-1
y
98
97
eqrdv
⊢
φ
∧
A
∈
ℂ
∖
0
→
F
×
f
G
-1
A
=
⋃
y
∈
ran
G
∖
0
F
-1
A
y
∩
G
-1
y