Metamath Proof Explorer


Theorem iccpartnel

Description: A point of a partition is not an element of any open interval determined by the partition. Corresponds to fourierdlem12 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 8-Jul-2020)

Ref Expression
Hypotheses iccpartnel.m φM
iccpartnel.p φPRePartM
iccpartnel.x φXranP
Assertion iccpartnel φI0..^M¬XPIPI+1

Proof

Step Hyp Ref Expression
1 iccpartnel.m φM
2 iccpartnel.p φPRePartM
3 iccpartnel.x φXranP
4 elioo3g XPIPI+1PI*PI+1*X*PI<XX<PI+1
5 iccpart MPRePartMP*0Mi0..^MPi<Pi+1
6 1 5 syl φPRePartMP*0Mi0..^MPi<Pi+1
7 elmapfn P*0MPFn0M
8 7 adantr P*0Mi0..^MPi<Pi+1PFn0M
9 6 8 syl6bi φPRePartMPFn0M
10 2 9 mpd φPFn0M
11 fvelrnb PFn0MXranPx0MPx=X
12 10 11 syl φXranPx0MPx=X
13 3 12 mpbid φx0MPx=X
14 elfzelz x0Mx
15 14 zred x0Mx
16 15 adantl φx0Mx
17 elfzoelz I0..^MI
18 17 zred I0..^MI
19 lelttric xIxII<x
20 16 18 19 syl2an φx0MI0..^MxII<x
21 breq2 Px=XPI<PxPI<X
22 breq1 Px=XPx<PI+1X<PI+1
23 21 22 anbi12d Px=XPI<PxPx<PI+1PI<XX<PI+1
24 leloe xIxIx<Ix=I
25 16 18 24 syl2an φx0MI0..^MxIx<Ix=I
26 1 2 iccpartgt φi0Mk0Mi<kPi<Pk
27 26 adantr φx0Mi0Mk0Mi<kPi<Pk
28 27 adantr φx0MI0..^Mi0Mk0Mi<kPi<Pk
29 simpr φx0Mx0M
30 elfzofz I0..^MI0M
31 breq1 i=xi<kx<k
32 fveq2 i=xPi=Px
33 32 breq1d i=xPi<PkPx<Pk
34 31 33 imbi12d i=xi<kPi<Pkx<kPx<Pk
35 breq2 k=Ix<kx<I
36 fveq2 k=IPk=PI
37 36 breq2d k=IPx<PkPx<PI
38 35 37 imbi12d k=Ix<kPx<Pkx<IPx<PI
39 34 38 rspc2v x0MI0Mi0Mk0Mi<kPi<Pkx<IPx<PI
40 29 30 39 syl2an φx0MI0..^Mi0Mk0Mi<kPi<Pkx<IPx<PI
41 28 40 mpd φx0MI0..^Mx<IPx<PI
42 pm3.35 x<Ix<IPx<PIPx<PI
43 1 adantr φx0MM
44 2 adantr φx0MPRePartM
45 43 44 29 iccpartxr φx0MPx*
46 45 adantr φx0MI0..^MPx*
47 simp1 PI*PI+1*X*PI*
48 xrltle Px*PI*Px<PIPxPI
49 46 47 48 syl2anr PI*PI+1*X*φx0MI0..^MPx<PIPxPI
50 xrlenlt Px*PI*PxPI¬PI<Px
51 46 47 50 syl2anr PI*PI+1*X*φx0MI0..^MPxPI¬PI<Px
52 49 51 sylibd PI*PI+1*X*φx0MI0..^MPx<PI¬PI<Px
53 52 ex PI*PI+1*X*φx0MI0..^MPx<PI¬PI<Px
54 53 com13 Px<PIφx0MI0..^MPI*PI+1*X*¬PI<Px
55 54 imp Px<PIφx0MI0..^MPI*PI+1*X*¬PI<Px
56 55 imp Px<PIφx0MI0..^MPI*PI+1*X*¬PI<Px
57 56 pm2.21d Px<PIφx0MI0..^MPI*PI+1*X*PI<Px¬XPIPI+1
58 57 ex Px<PIφx0MI0..^MPI*PI+1*X*PI<Px¬XPIPI+1
59 58 ex Px<PIφx0MI0..^MPI*PI+1*X*PI<Px¬XPIPI+1
60 42 59 syl x<Ix<IPx<PIφx0MI0..^MPI*PI+1*X*PI<Px¬XPIPI+1
61 60 ex x<Ix<IPx<PIφx0MI0..^MPI*PI+1*X*PI<Px¬XPIPI+1
62 61 com13 φx0MI0..^Mx<IPx<PIx<IPI*PI+1*X*PI<Px¬XPIPI+1
63 41 62 mpd φx0MI0..^Mx<IPI*PI+1*X*PI<Px¬XPIPI+1
64 63 com12 x<Iφx0MI0..^MPI*PI+1*X*PI<Px¬XPIPI+1
65 fveq2 x=IPx=PI
66 65 breq2d x=IPI<PxPI<PI
67 66 adantr x=IPI*PI+1*X*PI<PxPI<PI
68 xrltnr PI*¬PI<PI
69 68 3ad2ant1 PI*PI+1*X*¬PI<PI
70 69 adantl x=IPI*PI+1*X*¬PI<PI
71 70 pm2.21d x=IPI*PI+1*X*PI<PI¬XPIPI+1
72 67 71 sylbid x=IPI*PI+1*X*PI<Px¬XPIPI+1
73 72 ex x=IPI*PI+1*X*PI<Px¬XPIPI+1
74 73 a1d x=Iφx0MI0..^MPI*PI+1*X*PI<Px¬XPIPI+1
75 64 74 jaoi x<Ix=Iφx0MI0..^MPI*PI+1*X*PI<Px¬XPIPI+1
76 75 com12 φx0MI0..^Mx<Ix=IPI*PI+1*X*PI<Px¬XPIPI+1
77 25 76 sylbid φx0MI0..^MxIPI*PI+1*X*PI<Px¬XPIPI+1
78 77 com23 φx0MI0..^MPI*PI+1*X*xIPI<Px¬XPIPI+1
79 78 com14 PI<PxPI*PI+1*X*xIφx0MI0..^M¬XPIPI+1
80 79 adantr PI<PxPx<PI+1PI*PI+1*X*xIφx0MI0..^M¬XPIPI+1
81 23 80 syl6bir Px=XPI<XX<PI+1PI*PI+1*X*xIφx0MI0..^M¬XPIPI+1
82 81 com14 xIPI<XX<PI+1PI*PI+1*X*Px=Xφx0MI0..^M¬XPIPI+1
83 82 com23 xIPI*PI+1*X*PI<XX<PI+1Px=Xφx0MI0..^M¬XPIPI+1
84 83 impd xIPI*PI+1*X*PI<XX<PI+1Px=Xφx0MI0..^M¬XPIPI+1
85 84 com24 xIφx0MI0..^MPx=XPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
86 14 adantl φx0Mx
87 zltp1le IxI<xI+1x
88 17 86 87 syl2anr φx0MI0..^MI<xI+1x
89 17 peano2zd I0..^MI+1
90 89 zred I0..^MI+1
91 leloe I+1xI+1xI+1<xI+1=x
92 90 16 91 syl2anr φx0MI0..^MI+1xI+1<xI+1=x
93 88 92 bitrd φx0MI0..^MI<xI+1<xI+1=x
94 fzofzp1 I0..^MI+10M
95 breq1 i=I+1i<kI+1<k
96 fveq2 i=I+1Pi=PI+1
97 96 breq1d i=I+1Pi<PkPI+1<Pk
98 95 97 imbi12d i=I+1i<kPi<PkI+1<kPI+1<Pk
99 breq2 k=xI+1<kI+1<x
100 fveq2 k=xPk=Px
101 100 breq2d k=xPI+1<PkPI+1<Px
102 99 101 imbi12d k=xI+1<kPI+1<PkI+1<xPI+1<Px
103 98 102 rspc2v I+10Mx0Mi0Mk0Mi<kPi<PkI+1<xPI+1<Px
104 94 29 103 syl2anr φx0MI0..^Mi0Mk0Mi<kPi<PkI+1<xPI+1<Px
105 28 104 mpd φx0MI0..^MI+1<xPI+1<Px
106 pm3.35 I+1<xI+1<xPI+1<PxPI+1<Px
107 simp2 PI*PI+1*X*PI+1*
108 xrltnsym Px*PI+1*Px<PI+1¬PI+1<Px
109 46 107 108 syl2an φx0MI0..^MPI*PI+1*X*Px<PI+1¬PI+1<Px
110 109 imp φx0MI0..^MPI*PI+1*X*Px<PI+1¬PI+1<Px
111 110 pm2.21d φx0MI0..^MPI*PI+1*X*Px<PI+1PI+1<Px¬XPIPI+1
112 111 expcom Px<PI+1φx0MI0..^MPI*PI+1*X*PI+1<Px¬XPIPI+1
113 112 expd Px<PI+1φx0MI0..^MPI*PI+1*X*PI+1<Px¬XPIPI+1
114 113 adantl PI<PxPx<PI+1φx0MI0..^MPI*PI+1*X*PI+1<Px¬XPIPI+1
115 114 com14 PI+1<Pxφx0MI0..^MPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
116 106 115 syl I+1<xI+1<xPI+1<Pxφx0MI0..^MPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
117 116 ex I+1<xI+1<xPI+1<Pxφx0MI0..^MPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
118 117 com13 φx0MI0..^MI+1<xPI+1<PxI+1<xPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
119 105 118 mpd φx0MI0..^MI+1<xPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
120 119 com12 I+1<xφx0MI0..^MPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
121 fveq2 I+1=xPI+1=Px
122 121 breq2d I+1=xPI<PI+1PI<Px
123 121 breq1d I+1=xPI+1<PI+1Px<PI+1
124 122 123 anbi12d I+1=xPI<PI+1PI+1<PI+1PI<PxPx<PI+1
125 xrltnr PI+1*¬PI+1<PI+1
126 125 3ad2ant2 PI*PI+1*X*¬PI+1<PI+1
127 126 pm2.21d PI*PI+1*X*PI+1<PI+1¬XPIPI+1
128 127 com12 PI+1<PI+1PI*PI+1*X*¬XPIPI+1
129 128 adantl PI<PI+1PI+1<PI+1PI*PI+1*X*¬XPIPI+1
130 124 129 syl6bir I+1=xPI<PxPx<PI+1PI*PI+1*X*¬XPIPI+1
131 130 com23 I+1=xPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
132 131 a1d I+1=xφx0MI0..^MPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
133 120 132 jaoi I+1<xI+1=xφx0MI0..^MPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
134 133 com12 φx0MI0..^MI+1<xI+1=xPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
135 93 134 sylbid φx0MI0..^MI<xPI*PI+1*X*PI<PxPx<PI+1¬XPIPI+1
136 135 com23 φx0MI0..^MPI*PI+1*X*I<xPI<PxPx<PI+1¬XPIPI+1
137 136 com14 PI<PxPx<PI+1PI*PI+1*X*I<xφx0MI0..^M¬XPIPI+1
138 23 137 syl6bir Px=XPI<XX<PI+1PI*PI+1*X*I<xφx0MI0..^M¬XPIPI+1
139 138 com14 I<xPI<XX<PI+1PI*PI+1*X*Px=Xφx0MI0..^M¬XPIPI+1
140 139 com23 I<xPI*PI+1*X*PI<XX<PI+1Px=Xφx0MI0..^M¬XPIPI+1
141 140 impd I<xPI*PI+1*X*PI<XX<PI+1Px=Xφx0MI0..^M¬XPIPI+1
142 141 com24 I<xφx0MI0..^MPx=XPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
143 85 142 jaoi xII<xφx0MI0..^MPx=XPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
144 143 com12 φx0MI0..^MxII<xPx=XPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
145 20 144 mpd φx0MI0..^MPx=XPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
146 145 ex φx0MI0..^MPx=XPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
147 146 com23 φx0MPx=XI0..^MPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
148 147 rexlimdva φx0MPx=XI0..^MPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
149 13 148 mpd φI0..^MPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
150 149 imp φI0..^MPI*PI+1*X*PI<XX<PI+1¬XPIPI+1
151 150 com12 PI*PI+1*X*PI<XX<PI+1φI0..^M¬XPIPI+1
152 4 151 sylbi XPIPI+1φI0..^M¬XPIPI+1
153 ax-1 ¬XPIPI+1φI0..^M¬XPIPI+1
154 152 153 pm2.61i φI0..^M¬XPIPI+1