Metamath Proof Explorer


Theorem imo72b2lem0

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem0.1 φ F :
imo72b2lem0.2 φ G :
imo72b2lem0.3 φ A
imo72b2lem0.4 φ B
imo72b2lem0.5 φ F A + B + F A B = 2 F A G B
imo72b2lem0.6 φ y F y 1
Assertion imo72b2lem0 φ F A G B sup abs F <

Proof

Step Hyp Ref Expression
1 imo72b2lem0.1 φ F :
2 imo72b2lem0.2 φ G :
3 imo72b2lem0.3 φ A
4 imo72b2lem0.4 φ B
5 imo72b2lem0.5 φ F A + B + F A B = 2 F A G B
6 imo72b2lem0.6 φ y F y 1
7 1 3 ffvelrnd φ F A
8 7 recnd φ F A
9 8 idi φ F A
10 2 4 ffvelrnd φ G B
11 10 recnd φ G B
12 11 idi φ G B
13 9 12 mulcld φ F A G B
14 13 abscld φ F A G B
15 imaco abs F = abs F
16 15 eqcomi abs F = abs F
17 imassrn abs F ran abs F
18 17 a1i φ abs F ran abs F
19 absf abs :
20 19 a1i φ abs :
21 ax-resscn
22 21 a1i φ
23 20 22 fssresd φ abs :
24 1 23 fco2d φ abs F :
25 24 frnd φ ran abs F
26 18 25 sstrd φ abs F
27 16 26 eqsstrid φ abs F
28 0re 0
29 28 ne0ii
30 29 a1i φ
31 30 24 wnefimgd φ abs F
32 31 necomd φ abs F
33 16 a1i φ abs F = abs F
34 32 33 neeqtrrd φ abs F
35 34 necomd φ abs F
36 1red φ 1
37 simpr φ c = 1 c = 1
38 37 breq2d φ c = 1 x c x 1
39 38 ralbidv φ c = 1 x abs F x c x abs F x 1
40 1 6 extoimad φ x abs F x 1
41 36 39 40 rspcedvd φ c x abs F x c
42 27 35 41 suprcld φ sup abs F <
43 2re 2
44 43 a1i φ 2
45 5 idi φ F A + B + F A B = 2 F A G B
46 45 fveq2d φ F A + B + F A B = 2 F A G B
47 2cnd φ 2
48 47 13 mulcld φ 2 F A G B
49 48 abscld φ 2 F A G B
50 46 49 eqeltrd φ F A + B + F A B
51 1 idi φ F :
52 3 idi φ A
53 4 idi φ B
54 52 53 readdcld φ A + B
55 51 54 ffvelrnd φ F A + B
56 55 recnd φ F A + B
57 56 abscld φ F A + B
58 52 53 resubcld φ A B
59 51 58 ffvelrnd φ F A B
60 59 recnd φ F A B
61 60 abscld φ F A B
62 57 61 readdcld φ F A + B + F A B
63 44 42 remulcld φ 2 sup abs F <
64 56 60 abstrid φ F A + B + F A B F A + B + F A B
65 1 54 fvco3d φ abs F A + B = F A + B
66 54 24 wfximgfd φ abs F A + B abs F
67 33 idi φ abs F = abs F
68 66 67 eleqtrrd φ abs F A + B abs F
69 65 68 eqeltrrd φ F A + B abs F
70 27 35 41 69 suprubd φ F A + B sup abs F <
71 1 58 fvco3d φ abs F A B = F A B
72 58 24 wfximgfd φ abs F A B abs F
73 72 33 eleqtrrd φ abs F A B abs F
74 71 73 eqeltrrd φ F A B abs F
75 27 35 41 74 suprubd φ F A B sup abs F <
76 57 61 42 42 70 75 le2addd φ F A + B + F A B sup abs F < + sup abs F <
77 42 recnd φ sup abs F <
78 77 2timesd φ 2 sup abs F < = sup abs F < + sup abs F <
79 78 eqcomd φ sup abs F < + sup abs F < = 2 sup abs F <
80 79 63 eqeltrd φ sup abs F < + sup abs F <
81 76 79 62 80 leeq2d φ F A + B + F A B 2 sup abs F <
82 50 62 63 64 81 letrd φ F A + B + F A B 2 sup abs F <
83 82 46 50 63 leeq1d φ 2 F A G B 2 sup abs F <
84 0le2 0 2
85 84 a1i φ 0 2
86 7 idi φ F A
87 10 idi φ G B
88 86 87 remulcld φ F A G B
89 85 44 88 absmulrposd φ 2 F A G B = 2 F A G B
90 83 89 49 63 leeq1d φ 2 F A G B 2 sup abs F <
91 2pos 0 < 2
92 91 a1i φ 0 < 2
93 14 42 44 90 92 wwlemuld φ F A G B sup abs F <
94 8 11 absmuld φ F A G B = F A G B
95 94 idi φ F A G B = F A G B
96 93 95 14 42 leeq1d φ F A G B sup abs F <