Metamath Proof Explorer


Theorem imo72b2lem0

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem0.1 φF:
imo72b2lem0.2 φG:
imo72b2lem0.3 φA
imo72b2lem0.4 φB
imo72b2lem0.5 φFA+B+FAB=2FAGB
imo72b2lem0.6 φyFy1
Assertion imo72b2lem0 φFAGBsupabsF<

Proof

Step Hyp Ref Expression
1 imo72b2lem0.1 φF:
2 imo72b2lem0.2 φG:
3 imo72b2lem0.3 φA
4 imo72b2lem0.4 φB
5 imo72b2lem0.5 φFA+B+FAB=2FAGB
6 imo72b2lem0.6 φyFy1
7 1 3 ffvelcdmd φFA
8 7 recnd φFA
9 8 idi φFA
10 2 4 ffvelcdmd φGB
11 10 recnd φGB
12 11 idi φGB
13 9 12 mulcld φFAGB
14 13 abscld φFAGB
15 imaco absF=absF
16 15 eqcomi absF=absF
17 imassrn absFranabsF
18 17 a1i φabsFranabsF
19 absf abs:
20 19 a1i φabs:
21 ax-resscn
22 21 a1i φ
23 20 22 fssresd φabs:
24 1 23 fco2d φabsF:
25 24 frnd φranabsF
26 18 25 sstrd φabsF
27 16 26 eqsstrid φabsF
28 0re 0
29 28 ne0ii
30 29 a1i φ
31 30 24 wnefimgd φabsF
32 31 necomd φabsF
33 16 a1i φabsF=absF
34 32 33 neeqtrrd φabsF
35 34 necomd φabsF
36 1red φ1
37 simpr φc=1c=1
38 37 breq2d φc=1xcx1
39 38 ralbidv φc=1xabsFxcxabsFx1
40 1 6 extoimad φxabsFx1
41 36 39 40 rspcedvd φcxabsFxc
42 27 35 41 suprcld φsupabsF<
43 2re 2
44 43 a1i φ2
45 5 idi φFA+B+FAB=2FAGB
46 45 fveq2d φFA+B+FAB=2FAGB
47 2cnd φ2
48 47 13 mulcld φ2FAGB
49 48 abscld φ2FAGB
50 46 49 eqeltrd φFA+B+FAB
51 1 idi φF:
52 3 idi φA
53 4 idi φB
54 52 53 readdcld φA+B
55 51 54 ffvelcdmd φFA+B
56 55 recnd φFA+B
57 56 abscld φFA+B
58 52 53 resubcld φAB
59 51 58 ffvelcdmd φFAB
60 59 recnd φFAB
61 60 abscld φFAB
62 57 61 readdcld φFA+B+FAB
63 44 42 remulcld φ2supabsF<
64 56 60 abstrid φFA+B+FABFA+B+FAB
65 1 54 fvco3d φabsFA+B=FA+B
66 54 24 wfximgfd φabsFA+BabsF
67 33 idi φabsF=absF
68 66 67 eleqtrrd φabsFA+BabsF
69 65 68 eqeltrrd φFA+BabsF
70 27 35 41 69 suprubd φFA+BsupabsF<
71 1 58 fvco3d φabsFAB=FAB
72 58 24 wfximgfd φabsFABabsF
73 72 33 eleqtrrd φabsFABabsF
74 71 73 eqeltrrd φFABabsF
75 27 35 41 74 suprubd φFABsupabsF<
76 57 61 42 42 70 75 le2addd φFA+B+FABsupabsF<+supabsF<
77 42 recnd φsupabsF<
78 77 2timesd φ2supabsF<=supabsF<+supabsF<
79 78 eqcomd φsupabsF<+supabsF<=2supabsF<
80 79 63 eqeltrd φsupabsF<+supabsF<
81 76 79 62 80 leeq2d φFA+B+FAB2supabsF<
82 50 62 63 64 81 letrd φFA+B+FAB2supabsF<
83 82 46 50 63 leeq1d φ2FAGB2supabsF<
84 0le2 02
85 84 a1i φ02
86 7 idi φFA
87 10 idi φGB
88 86 87 remulcld φFAGB
89 85 44 88 absmulrposd φ2FAGB=2FAGB
90 83 89 49 63 leeq1d φ2FAGB2supabsF<
91 2pos 0<2
92 91 a1i φ0<2
93 14 42 44 90 92 wwlemuld φFAGBsupabsF<
94 8 11 absmuld φFAGB=FAGB
95 94 idi φFAGB=FAGB
96 93 95 14 42 leeq1d φFAGBsupabsF<