Metamath Proof Explorer


Theorem ipcnlem2

Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ipcn.v V=BaseW
ipcn.h ,˙=𝑖W
ipcn.d D=distW
ipcn.n N=normW
ipcn.t T=R2NA+1
ipcn.u U=R2NB+T
ipcn.w φWCPreHil
ipcn.a φAV
ipcn.b φBV
ipcn.r φR+
ipcn.x φXV
ipcn.y φYV
ipcn.1 φADX<U
ipcn.2 φBDY<T
Assertion ipcnlem2 φA,˙BX,˙Y<R

Proof

Step Hyp Ref Expression
1 ipcn.v V=BaseW
2 ipcn.h ,˙=𝑖W
3 ipcn.d D=distW
4 ipcn.n N=normW
5 ipcn.t T=R2NA+1
6 ipcn.u U=R2NB+T
7 ipcn.w φWCPreHil
8 ipcn.a φAV
9 ipcn.b φBV
10 ipcn.r φR+
11 ipcn.x φXV
12 ipcn.y φYV
13 ipcn.1 φADX<U
14 ipcn.2 φBDY<T
15 1 2 cphipcl WCPreHilAVBVA,˙B
16 7 8 9 15 syl3anc φA,˙B
17 1 2 cphipcl WCPreHilXVYVX,˙Y
18 7 11 12 17 syl3anc φX,˙Y
19 1 2 cphipcl WCPreHilAVYVA,˙Y
20 7 8 12 19 syl3anc φA,˙Y
21 10 rpred φR
22 16 20 subcld φA,˙BA,˙Y
23 22 abscld φA,˙BA,˙Y
24 cphnlm WCPreHilWNrmMod
25 7 24 syl φWNrmMod
26 nlmngp WNrmModWNrmGrp
27 25 26 syl φWNrmGrp
28 1 4 nmcl WNrmGrpAVNA
29 27 8 28 syl2anc φNA
30 1 4 nmge0 WNrmGrpAV0NA
31 27 8 30 syl2anc φ0NA
32 29 31 ge0p1rpd φNA+1+
33 32 rpred φNA+1
34 ngpms WNrmGrpWMetSp
35 27 34 syl φWMetSp
36 1 3 mscl WMetSpBVYVBDY
37 35 9 12 36 syl3anc φBDY
38 33 37 remulcld φNA+1BDY
39 21 rehalfcld φR2
40 29 37 remulcld φNABDY
41 eqid -W=-W
42 2 1 41 cphsubdi WCPreHilAVBVYVA,˙B-WY=A,˙BA,˙Y
43 7 8 9 12 42 syl13anc φA,˙B-WY=A,˙BA,˙Y
44 43 fveq2d φA,˙B-WY=A,˙BA,˙Y
45 ngpgrp WNrmGrpWGrp
46 27 45 syl φWGrp
47 1 41 grpsubcl WGrpBVYVB-WYV
48 46 9 12 47 syl3anc φB-WYV
49 1 2 4 ipcau WCPreHilAVB-WYVA,˙B-WYNANB-WY
50 7 8 48 49 syl3anc φA,˙B-WYNANB-WY
51 4 1 41 3 ngpds WNrmGrpBVYVBDY=NB-WY
52 27 9 12 51 syl3anc φBDY=NB-WY
53 52 oveq2d φNABDY=NANB-WY
54 50 53 breqtrrd φA,˙B-WYNABDY
55 44 54 eqbrtrrd φA,˙BA,˙YNABDY
56 msxms WMetSpW∞MetSp
57 35 56 syl φW∞MetSp
58 1 3 xmsge0 W∞MetSpBVYV0BDY
59 57 9 12 58 syl3anc φ0BDY
60 29 lep1d φNANA+1
61 29 33 37 59 60 lemul1ad φNABDYNA+1BDY
62 23 40 38 55 61 letrd φA,˙BA,˙YNA+1BDY
63 14 5 breqtrdi φBDY<R2NA+1
64 37 39 32 ltmuldiv2d φNA+1BDY<R2BDY<R2NA+1
65 63 64 mpbird φNA+1BDY<R2
66 23 38 39 62 65 lelttrd φA,˙BA,˙Y<R2
67 20 18 subcld φA,˙YX,˙Y
68 67 abscld φA,˙YX,˙Y
69 1 3 mscl WMetSpAVXVADX
70 35 8 11 69 syl3anc φADX
71 1 4 nmcl WNrmGrpBVNB
72 27 9 71 syl2anc φNB
73 10 rphalfcld φR2+
74 73 32 rpdivcld φR2NA+1+
75 5 74 eqeltrid φT+
76 75 rpred φT
77 72 76 readdcld φNB+T
78 70 77 remulcld φADXNB+T
79 1 4 nmcl WNrmGrpYVNY
80 27 12 79 syl2anc φNY
81 70 80 remulcld φADXNY
82 2 1 41 cphsubdir WCPreHilAVXVYVA-WX,˙Y=A,˙YX,˙Y
83 7 8 11 12 82 syl13anc φA-WX,˙Y=A,˙YX,˙Y
84 83 fveq2d φA-WX,˙Y=A,˙YX,˙Y
85 1 41 grpsubcl WGrpAVXVA-WXV
86 46 8 11 85 syl3anc φA-WXV
87 1 2 4 ipcau WCPreHilA-WXVYVA-WX,˙YNA-WXNY
88 7 86 12 87 syl3anc φA-WX,˙YNA-WXNY
89 4 1 41 3 ngpds WNrmGrpAVXVADX=NA-WX
90 27 8 11 89 syl3anc φADX=NA-WX
91 90 oveq1d φADXNY=NA-WXNY
92 88 91 breqtrrd φA-WX,˙YADXNY
93 84 92 eqbrtrrd φA,˙YX,˙YADXNY
94 1 3 xmsge0 W∞MetSpAVXV0ADX
95 57 8 11 94 syl3anc φ0ADX
96 80 72 resubcld φNYNB
97 1 4 41 nm2dif WNrmGrpYVBVNYNBNY-WB
98 27 12 9 97 syl3anc φNYNBNY-WB
99 4 1 41 3 ngpdsr WNrmGrpBVYVBDY=NY-WB
100 27 9 12 99 syl3anc φBDY=NY-WB
101 98 100 breqtrrd φNYNBBDY
102 37 76 14 ltled φBDYT
103 96 37 76 101 102 letrd φNYNBT
104 80 72 76 lesubadd2d φNYNBTNYNB+T
105 103 104 mpbid φNYNB+T
106 80 77 70 95 105 lemul2ad φADXNYADXNB+T
107 68 81 78 93 106 letrd φA,˙YX,˙YADXNB+T
108 13 6 breqtrdi φADX<R2NB+T
109 0red φ0
110 1 4 nmge0 WNrmGrpBV0NB
111 27 9 110 syl2anc φ0NB
112 72 75 ltaddrpd φNB<NB+T
113 109 72 77 111 112 lelttrd φ0<NB+T
114 ltmuldiv ADXR2NB+T0<NB+TADXNB+T<R2ADX<R2NB+T
115 70 39 77 113 114 syl112anc φADXNB+T<R2ADX<R2NB+T
116 108 115 mpbird φADXNB+T<R2
117 68 78 39 107 116 lelttrd φA,˙YX,˙Y<R2
118 16 18 20 21 66 117 abs3lemd φA,˙BX,˙Y<R