Metamath Proof Explorer


Theorem isabvd

Description: Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses isabvd.a φA=AbsValR
isabvd.b φB=BaseR
isabvd.p φ+˙=+R
isabvd.t φ·˙=R
isabvd.z φ0˙=0R
isabvd.1 φRRing
isabvd.2 φF:B
isabvd.3 φF0˙=0
isabvd.4 φxBx0˙0<Fx
isabvd.5 φxBx0˙yBy0˙Fx·˙y=FxFy
isabvd.6 φxBx0˙yBy0˙Fx+˙yFx+Fy
Assertion isabvd φFA

Proof

Step Hyp Ref Expression
1 isabvd.a φA=AbsValR
2 isabvd.b φB=BaseR
3 isabvd.p φ+˙=+R
4 isabvd.t φ·˙=R
5 isabvd.z φ0˙=0R
6 isabvd.1 φRRing
7 isabvd.2 φF:B
8 isabvd.3 φF0˙=0
9 isabvd.4 φxBx0˙0<Fx
10 isabvd.5 φxBx0˙yBy0˙Fx·˙y=FxFy
11 isabvd.6 φxBx0˙yBy0˙Fx+˙yFx+Fy
12 2 feq2d φF:BF:BaseR
13 7 12 mpbid φF:BaseR
14 13 ffnd φFFnBaseR
15 13 ffvelcdmda φxBaseRFx
16 0le0 00
17 5 fveq2d φF0˙=F0R
18 17 8 eqtr3d φF0R=0
19 16 18 breqtrrid φ0F0R
20 19 adantr φxBaseR0F0R
21 fveq2 x=0RFx=F0R
22 21 breq2d x=0R0Fx0F0R
23 20 22 syl5ibrcom φxBaseRx=0R0Fx
24 simp1 φxBaseRx0Rφ
25 simp2 φxBaseRx0RxBaseR
26 2 3ad2ant1 φxBaseRx0RB=BaseR
27 25 26 eleqtrrd φxBaseRx0RxB
28 simp3 φxBaseRx0Rx0R
29 5 3ad2ant1 φxBaseRx0R0˙=0R
30 28 29 neeqtrrd φxBaseRx0Rx0˙
31 24 27 30 9 syl3anc φxBaseRx0R0<Fx
32 0re 0
33 15 3adant3 φxBaseRx0RFx
34 ltle 0Fx0<Fx0Fx
35 32 33 34 sylancr φxBaseRx0R0<Fx0Fx
36 31 35 mpd φxBaseRx0R0Fx
37 36 3expia φxBaseRx0R0Fx
38 23 37 pm2.61dne φxBaseR0Fx
39 elrege0 Fx0+∞Fx0Fx
40 15 38 39 sylanbrc φxBaseRFx0+∞
41 40 ralrimiva φxBaseRFx0+∞
42 ffnfv F:BaseR0+∞FFnBaseRxBaseRFx0+∞
43 14 41 42 sylanbrc φF:BaseR0+∞
44 31 gt0ne0d φxBaseRx0RFx0
45 44 3expia φxBaseRx0RFx0
46 45 necon4d φxBaseRFx=0x=0R
47 18 adantr φxBaseRF0R=0
48 fveqeq2 x=0RFx=0F0R=0
49 47 48 syl5ibrcom φxBaseRx=0RFx=0
50 46 49 impbid φxBaseRFx=0x=0R
51 18 3ad2ant1 φxBaseRyBaseRF0R=0
52 51 adantr φxBaseRyBaseRx=0RF0R=0
53 oveq1 x=0RxRy=0RRy
54 6 3ad2ant1 φxBaseRyBaseRRRing
55 simp3 φxBaseRyBaseRyBaseR
56 eqid BaseR=BaseR
57 eqid R=R
58 eqid 0R=0R
59 56 57 58 ringlz RRingyBaseR0RRy=0R
60 54 55 59 syl2anc φxBaseRyBaseR0RRy=0R
61 53 60 sylan9eqr φxBaseRyBaseRx=0RxRy=0R
62 61 fveq2d φxBaseRyBaseRx=0RFxRy=F0R
63 21 51 sylan9eqr φxBaseRyBaseRx=0RFx=0
64 63 oveq1d φxBaseRyBaseRx=0RFxFy=0Fy
65 13 3ad2ant1 φxBaseRyBaseRF:BaseR
66 65 55 ffvelcdmd φxBaseRyBaseRFy
67 66 recnd φxBaseRyBaseRFy
68 67 adantr φxBaseRyBaseRx=0RFy
69 68 mul02d φxBaseRyBaseRx=0R0Fy=0
70 64 69 eqtrd φxBaseRyBaseRx=0RFxFy=0
71 52 62 70 3eqtr4d φxBaseRyBaseRx=0RFxRy=FxFy
72 51 adantr φxBaseRyBaseRy=0RF0R=0
73 oveq2 y=0RxRy=xR0R
74 simp2 φxBaseRyBaseRxBaseR
75 56 57 58 ringrz RRingxBaseRxR0R=0R
76 54 74 75 syl2anc φxBaseRyBaseRxR0R=0R
77 73 76 sylan9eqr φxBaseRyBaseRy=0RxRy=0R
78 77 fveq2d φxBaseRyBaseRy=0RFxRy=F0R
79 fveq2 y=0RFy=F0R
80 79 51 sylan9eqr φxBaseRyBaseRy=0RFy=0
81 80 oveq2d φxBaseRyBaseRy=0RFxFy=Fx0
82 65 74 ffvelcdmd φxBaseRyBaseRFx
83 82 recnd φxBaseRyBaseRFx
84 83 adantr φxBaseRyBaseRy=0RFx
85 84 mul01d φxBaseRyBaseRy=0RFx0=0
86 81 85 eqtrd φxBaseRyBaseRy=0RFxFy=0
87 72 78 86 3eqtr4d φxBaseRyBaseRy=0RFxRy=FxFy
88 simpl1 φxBaseRyBaseRx0Ry0Rφ
89 88 4 syl φxBaseRyBaseRx0Ry0R·˙=R
90 89 oveqd φxBaseRyBaseRx0Ry0Rx·˙y=xRy
91 90 fveq2d φxBaseRyBaseRx0Ry0RFx·˙y=FxRy
92 simpl2 φxBaseRyBaseRx0Ry0RxBaseR
93 88 2 syl φxBaseRyBaseRx0Ry0RB=BaseR
94 92 93 eleqtrrd φxBaseRyBaseRx0Ry0RxB
95 simprl φxBaseRyBaseRx0Ry0Rx0R
96 88 5 syl φxBaseRyBaseRx0Ry0R0˙=0R
97 95 96 neeqtrrd φxBaseRyBaseRx0Ry0Rx0˙
98 simpl3 φxBaseRyBaseRx0Ry0RyBaseR
99 98 93 eleqtrrd φxBaseRyBaseRx0Ry0RyB
100 simprr φxBaseRyBaseRx0Ry0Ry0R
101 100 96 neeqtrrd φxBaseRyBaseRx0Ry0Ry0˙
102 88 94 97 99 101 10 syl122anc φxBaseRyBaseRx0Ry0RFx·˙y=FxFy
103 91 102 eqtr3d φxBaseRyBaseRx0Ry0RFxRy=FxFy
104 71 87 103 pm2.61da2ne φxBaseRyBaseRFxRy=FxFy
105 oveq1 x=0Rx+Ry=0R+Ry
106 ringgrp RRingRGrp
107 54 106 syl φxBaseRyBaseRRGrp
108 eqid +R=+R
109 56 108 58 grplid RGrpyBaseR0R+Ry=y
110 107 55 109 syl2anc φxBaseRyBaseR0R+Ry=y
111 105 110 sylan9eqr φxBaseRyBaseRx=0Rx+Ry=y
112 111 fveq2d φxBaseRyBaseRx=0RFx+Ry=Fy
113 16 63 breqtrrid φxBaseRyBaseRx=0R0Fx
114 66 82 addge02d φxBaseRyBaseR0FxFyFx+Fy
115 114 adantr φxBaseRyBaseRx=0R0FxFyFx+Fy
116 113 115 mpbid φxBaseRyBaseRx=0RFyFx+Fy
117 112 116 eqbrtrd φxBaseRyBaseRx=0RFx+RyFx+Fy
118 oveq2 y=0Rx+Ry=x+R0R
119 56 108 58 grprid RGrpxBaseRx+R0R=x
120 107 74 119 syl2anc φxBaseRyBaseRx+R0R=x
121 118 120 sylan9eqr φxBaseRyBaseRy=0Rx+Ry=x
122 121 fveq2d φxBaseRyBaseRy=0RFx+Ry=Fx
123 16 80 breqtrrid φxBaseRyBaseRy=0R0Fy
124 82 66 addge01d φxBaseRyBaseR0FyFxFx+Fy
125 124 adantr φxBaseRyBaseRy=0R0FyFxFx+Fy
126 123 125 mpbid φxBaseRyBaseRy=0RFxFx+Fy
127 122 126 eqbrtrd φxBaseRyBaseRy=0RFx+RyFx+Fy
128 88 3 syl φxBaseRyBaseRx0Ry0R+˙=+R
129 128 oveqd φxBaseRyBaseRx0Ry0Rx+˙y=x+Ry
130 129 fveq2d φxBaseRyBaseRx0Ry0RFx+˙y=Fx+Ry
131 88 94 97 99 101 11 syl122anc φxBaseRyBaseRx0Ry0RFx+˙yFx+Fy
132 130 131 eqbrtrrd φxBaseRyBaseRx0Ry0RFx+RyFx+Fy
133 117 127 132 pm2.61da2ne φxBaseRyBaseRFx+RyFx+Fy
134 104 133 jca φxBaseRyBaseRFxRy=FxFyFx+RyFx+Fy
135 134 3expia φxBaseRyBaseRFxRy=FxFyFx+RyFx+Fy
136 135 ralrimiv φxBaseRyBaseRFxRy=FxFyFx+RyFx+Fy
137 50 136 jca φxBaseRFx=0x=0RyBaseRFxRy=FxFyFx+RyFx+Fy
138 137 ralrimiva φxBaseRFx=0x=0RyBaseRFxRy=FxFyFx+RyFx+Fy
139 eqid AbsValR=AbsValR
140 139 56 108 57 58 isabv RRingFAbsValRF:BaseR0+∞xBaseRFx=0x=0RyBaseRFxRy=FxFyFx+RyFx+Fy
141 6 140 syl φFAbsValRF:BaseR0+∞xBaseRFx=0x=0RyBaseRFxRy=FxFyFx+RyFx+Fy
142 43 138 141 mpbir2and φFAbsValR
143 142 1 eleqtrrd φFA