Metamath Proof Explorer


Theorem isercolllem3

Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses isercoll.z Z=M
isercoll.m φM
isercoll.g φG:Z
isercoll.i φkGk<Gk+1
isercoll.0 φnZranGFn=0
isercoll.f φnZFn
isercoll.h φkHk=FGk
Assertion isercolllem3 φNG1seqM+FN=seq1+HGG-1MN

Proof

Step Hyp Ref Expression
1 isercoll.z Z=M
2 isercoll.m φM
3 isercoll.g φG:Z
4 isercoll.i φkGk<Gk+1
5 isercoll.0 φnZranGFn=0
6 isercoll.f φnZFn
7 isercoll.h φkHk=FGk
8 addlid n0+n=n
9 8 adantl φNG1n0+n=n
10 addrid nn+0=n
11 10 adantl φNG1nn+0=n
12 addcl nkn+k
13 12 adantl φNG1nkn+k
14 0cnd φNG10
15 cnvimass G-1MNdomG
16 3 adantr φNG1G:Z
17 15 16 fssdm φNG1G-1MN
18 1 2 3 4 isercolllem1 φG-1MNGG-1MNIsom<,<G-1MNGG-1MN
19 17 18 syldan φNG1GG-1MNIsom<,<G-1MNGG-1MN
20 1 2 3 4 isercolllem2 φNG11GG-1MN=G-1MN
21 isoeq4 1GG-1MN=G-1MNGG-1MNIsom<,<1GG-1MNGG-1MNGG-1MNIsom<,<G-1MNGG-1MN
22 20 21 syl φNG1GG-1MNIsom<,<1GG-1MNGG-1MNGG-1MNIsom<,<G-1MNGG-1MN
23 19 22 mpbird φNG1GG-1MNIsom<,<1GG-1MNGG-1MN
24 15 a1i φNG1G-1MNdomG
25 sseqin2 G-1MNdomGdomGG-1MN=G-1MN
26 24 25 sylib φNG1domGG-1MN=G-1MN
27 1nn 1
28 27 a1i φNG11
29 ffvelcdm G:Z1G1Z
30 3 27 29 sylancl φG1Z
31 30 1 eleqtrdi φG1M
32 31 adantr φNG1G1M
33 simpr φNG1NG1
34 elfzuzb G1MNG1MNG1
35 32 33 34 sylanbrc φNG1G1MN
36 ffn G:ZGFn
37 elpreima GFn1G-1MN1G1MN
38 16 36 37 3syl φNG11G-1MN1G1MN
39 28 35 38 mpbir2and φNG11G-1MN
40 39 ne0d φNG1G-1MN
41 26 40 eqnetrd φNG1domGG-1MN
42 imadisj GG-1MN=domGG-1MN=
43 42 necon3bii GG-1MNdomGG-1MN
44 41 43 sylibr φNG1GG-1MN
45 ffun G:ZFunG
46 funimacnv FunGGG-1MN=MNranG
47 16 45 46 3syl φNG1GG-1MN=MNranG
48 inss1 MNranGMN
49 47 48 eqsstrdi φNG1GG-1MNMN
50 simpl φNG1φ
51 elfzuz nMNnM
52 51 1 eleqtrrdi nMNnZ
53 50 52 6 syl2an φNG1nMNFn
54 47 difeq2d φNG1MNGG-1MN=MNMNranG
55 difin MNMNranG=MNranG
56 54 55 eqtrdi φNG1MNGG-1MN=MNranG
57 52 ssriv MNZ
58 ssdif MNZMNranGZranG
59 57 58 mp1i φNG1MNranGZranG
60 56 59 eqsstrd φNG1MNGG-1MNZranG
61 60 sselda φNG1nMNGG-1MNnZranG
62 5 adantlr φNG1nZranGFn=0
63 61 62 syldan φNG1nMNGG-1MNFn=0
64 elfznn k1GG-1MNk
65 50 64 7 syl2an φNG1k1GG-1MNHk=FGk
66 20 eleq2d φNG1k1GG-1MNkG-1MN
67 66 biimpa φNG1k1GG-1MNkG-1MN
68 67 fvresd φNG1k1GG-1MNGG-1MNk=Gk
69 68 fveq2d φNG1k1GG-1MNFGG-1MNk=FGk
70 65 69 eqtr4d φNG1k1GG-1MNHk=FGG-1MNk
71 9 11 13 14 23 44 49 53 63 70 seqcoll2 φNG1seqM+FN=seq1+HGG-1MN