Metamath Proof Explorer


Theorem isercolllem3

Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses isercoll.z Z = M
isercoll.m φ M
isercoll.g φ G : Z
isercoll.i φ k G k < G k + 1
isercoll.0 φ n Z ran G F n = 0
isercoll.f φ n Z F n
isercoll.h φ k H k = F G k
Assertion isercolllem3 φ N G 1 seq M + F N = seq 1 + H G G -1 M N

Proof

Step Hyp Ref Expression
1 isercoll.z Z = M
2 isercoll.m φ M
3 isercoll.g φ G : Z
4 isercoll.i φ k G k < G k + 1
5 isercoll.0 φ n Z ran G F n = 0
6 isercoll.f φ n Z F n
7 isercoll.h φ k H k = F G k
8 addid2 n 0 + n = n
9 8 adantl φ N G 1 n 0 + n = n
10 addid1 n n + 0 = n
11 10 adantl φ N G 1 n n + 0 = n
12 addcl n k n + k
13 12 adantl φ N G 1 n k n + k
14 0cnd φ N G 1 0
15 cnvimass G -1 M N dom G
16 3 adantr φ N G 1 G : Z
17 15 16 fssdm φ N G 1 G -1 M N
18 1 2 3 4 isercolllem1 φ G -1 M N G G -1 M N Isom < , < G -1 M N G G -1 M N
19 17 18 syldan φ N G 1 G G -1 M N Isom < , < G -1 M N G G -1 M N
20 1 2 3 4 isercolllem2 φ N G 1 1 G G -1 M N = G -1 M N
21 isoeq4 1 G G -1 M N = G -1 M N G G -1 M N Isom < , < 1 G G -1 M N G G -1 M N G G -1 M N Isom < , < G -1 M N G G -1 M N
22 20 21 syl φ N G 1 G G -1 M N Isom < , < 1 G G -1 M N G G -1 M N G G -1 M N Isom < , < G -1 M N G G -1 M N
23 19 22 mpbird φ N G 1 G G -1 M N Isom < , < 1 G G -1 M N G G -1 M N
24 15 a1i φ N G 1 G -1 M N dom G
25 sseqin2 G -1 M N dom G dom G G -1 M N = G -1 M N
26 24 25 sylib φ N G 1 dom G G -1 M N = G -1 M N
27 1nn 1
28 27 a1i φ N G 1 1
29 ffvelrn G : Z 1 G 1 Z
30 3 27 29 sylancl φ G 1 Z
31 30 1 eleqtrdi φ G 1 M
32 31 adantr φ N G 1 G 1 M
33 simpr φ N G 1 N G 1
34 elfzuzb G 1 M N G 1 M N G 1
35 32 33 34 sylanbrc φ N G 1 G 1 M N
36 ffn G : Z G Fn
37 elpreima G Fn 1 G -1 M N 1 G 1 M N
38 16 36 37 3syl φ N G 1 1 G -1 M N 1 G 1 M N
39 28 35 38 mpbir2and φ N G 1 1 G -1 M N
40 39 ne0d φ N G 1 G -1 M N
41 26 40 eqnetrd φ N G 1 dom G G -1 M N
42 imadisj G G -1 M N = dom G G -1 M N =
43 42 necon3bii G G -1 M N dom G G -1 M N
44 41 43 sylibr φ N G 1 G G -1 M N
45 ffun G : Z Fun G
46 funimacnv Fun G G G -1 M N = M N ran G
47 16 45 46 3syl φ N G 1 G G -1 M N = M N ran G
48 inss1 M N ran G M N
49 47 48 eqsstrdi φ N G 1 G G -1 M N M N
50 simpl φ N G 1 φ
51 elfzuz n M N n M
52 51 1 eleqtrrdi n M N n Z
53 50 52 6 syl2an φ N G 1 n M N F n
54 47 difeq2d φ N G 1 M N G G -1 M N = M N M N ran G
55 difin M N M N ran G = M N ran G
56 54 55 syl6eq φ N G 1 M N G G -1 M N = M N ran G
57 52 ssriv M N Z
58 ssdif M N Z M N ran G Z ran G
59 57 58 mp1i φ N G 1 M N ran G Z ran G
60 56 59 eqsstrd φ N G 1 M N G G -1 M N Z ran G
61 60 sselda φ N G 1 n M N G G -1 M N n Z ran G
62 5 adantlr φ N G 1 n Z ran G F n = 0
63 61 62 syldan φ N G 1 n M N G G -1 M N F n = 0
64 elfznn k 1 G G -1 M N k
65 50 64 7 syl2an φ N G 1 k 1 G G -1 M N H k = F G k
66 20 eleq2d φ N G 1 k 1 G G -1 M N k G -1 M N
67 66 biimpa φ N G 1 k 1 G G -1 M N k G -1 M N
68 67 fvresd φ N G 1 k 1 G G -1 M N G G -1 M N k = G k
69 68 fveq2d φ N G 1 k 1 G G -1 M N F G G -1 M N k = F G k
70 65 69 eqtr4d φ N G 1 k 1 G G -1 M N H k = F G G -1 M N k
71 9 11 13 14 23 44 49 53 63 70 seqcoll2 φ N G 1 seq M + F N = seq 1 + H G G -1 M N