Metamath Proof Explorer


Theorem islbs3

Description: An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses islbs2.v V = Base W
islbs2.j J = LBasis W
islbs2.n N = LSpan W
Assertion islbs3 W LVec B J B V N B = V s s B N s V

Proof

Step Hyp Ref Expression
1 islbs2.v V = Base W
2 islbs2.j J = LBasis W
3 islbs2.n N = LSpan W
4 1 2 lbsss B J B V
5 4 adantl W LVec B J B V
6 1 2 3 lbssp B J N B = V
7 6 adantl W LVec B J N B = V
8 lveclmod W LVec W LMod
9 8 3ad2ant1 W LVec B J s B W LMod
10 pssss s B s B
11 10 4 sylan9ssr B J s B s V
12 11 3adant1 W LVec B J s B s V
13 1 3 lspssv W LMod s V N s V
14 9 12 13 syl2anc W LVec B J s B N s V
15 eqid Scalar W = Scalar W
16 15 lvecdrng W LVec Scalar W DivRing
17 eqid 0 Scalar W = 0 Scalar W
18 eqid 1 Scalar W = 1 Scalar W
19 17 18 drngunz Scalar W DivRing 1 Scalar W 0 Scalar W
20 16 19 syl W LVec 1 Scalar W 0 Scalar W
21 8 20 jca W LVec W LMod 1 Scalar W 0 Scalar W
22 2 3 15 18 17 1 lbspss W LMod 1 Scalar W 0 Scalar W B J s B N s V
23 21 22 syl3an1 W LVec B J s B N s V
24 df-pss N s V N s V N s V
25 14 23 24 sylanbrc W LVec B J s B N s V
26 25 3expia W LVec B J s B N s V
27 26 alrimiv W LVec B J s s B N s V
28 5 7 27 3jca W LVec B J B V N B = V s s B N s V
29 simpr1 W LVec B V N B = V s s B N s V B V
30 simpr2 W LVec B V N B = V s s B N s V N B = V
31 simplr1 W LVec B V N B = V s s B N s V x B B V
32 31 ssdifssd W LVec B V N B = V s s B N s V x B B x V
33 1 fvexi V V
34 ssexg B x V V V B x V
35 32 33 34 sylancl W LVec B V N B = V s s B N s V x B B x V
36 simplr3 W LVec B V N B = V s s B N s V x B s s B N s V
37 difssd W LVec B V N B = V s s B N s V x B B x B
38 simpr W LVec B V N B = V s s B N s V x B x B
39 neldifsn ¬ x B x
40 nelne1 x B ¬ x B x B B x
41 38 39 40 sylancl W LVec B V N B = V s s B N s V x B B B x
42 41 necomd W LVec B V N B = V s s B N s V x B B x B
43 df-pss B x B B x B B x B
44 37 42 43 sylanbrc W LVec B V N B = V s s B N s V x B B x B
45 psseq1 s = B x s B B x B
46 fveq2 s = B x N s = N B x
47 46 psseq1d s = B x N s V N B x V
48 45 47 imbi12d s = B x s B N s V B x B N B x V
49 48 spcgv B x V s s B N s V B x B N B x V
50 35 36 44 49 syl3c W LVec B V N B = V s s B N s V x B N B x V
51 dfpss3 N B x V N B x V ¬ V N B x
52 51 simprbi N B x V ¬ V N B x
53 50 52 syl W LVec B V N B = V s s B N s V x B ¬ V N B x
54 simplr2 W LVec B V N B = V s s B N s V x B x N B x N B = V
55 8 ad2antrr W LVec B V N B = V s s B N s V x B x N B x W LMod
56 32 adantrr W LVec B V N B = V s s B N s V x B x N B x B x V
57 eqid LSubSp W = LSubSp W
58 1 57 3 lspcl W LMod B x V N B x LSubSp W
59 55 56 58 syl2anc W LVec B V N B = V s s B N s V x B x N B x N B x LSubSp W
60 ssun1 B B x
61 undif1 B x x = B x
62 60 61 sseqtrri B B x x
63 1 3 lspssid W LMod B x V B x N B x
64 55 56 63 syl2anc W LVec B V N B = V s s B N s V x B x N B x B x N B x
65 simprr W LVec B V N B = V s s B N s V x B x N B x x N B x
66 65 snssd W LVec B V N B = V s s B N s V x B x N B x x N B x
67 64 66 unssd W LVec B V N B = V s s B N s V x B x N B x B x x N B x
68 62 67 sstrid W LVec B V N B = V s s B N s V x B x N B x B N B x
69 57 3 lspssp W LMod N B x LSubSp W B N B x N B N B x
70 55 59 68 69 syl3anc W LVec B V N B = V s s B N s V x B x N B x N B N B x
71 54 70 eqsstrrd W LVec B V N B = V s s B N s V x B x N B x V N B x
72 71 expr W LVec B V N B = V s s B N s V x B x N B x V N B x
73 53 72 mtod W LVec B V N B = V s s B N s V x B ¬ x N B x
74 73 ralrimiva W LVec B V N B = V s s B N s V x B ¬ x N B x
75 1 2 3 islbs2 W LVec B J B V N B = V x B ¬ x N B x
76 75 adantr W LVec B V N B = V s s B N s V B J B V N B = V x B ¬ x N B x
77 29 30 74 76 mpbir3and W LVec B V N B = V s s B N s V B J
78 28 77 impbida W LVec B J B V N B = V s s B N s V