Metamath Proof Explorer


Theorem isldepslvec2

Description: Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 holds, so that both definitions are equivalent (see theorem 1.6 in Roman p. 46 and the note in Roman p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses islindeps2.b B = Base M
islindeps2.z Z = 0 M
islindeps2.r R = Scalar M
islindeps2.e E = Base R
islindeps2.0 0 ˙ = 0 R
Assertion isldepslvec2 M LVec S 𝒫 B s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M

Proof

Step Hyp Ref Expression
1 islindeps2.b B = Base M
2 islindeps2.z Z = 0 M
3 islindeps2.r R = Scalar M
4 islindeps2.e E = Base R
5 islindeps2.0 0 ˙ = 0 R
6 lveclmod M LVec M LMod
7 6 adantr M LVec S 𝒫 B M LMod
8 simpr M LVec S 𝒫 B S 𝒫 B
9 3 lvecdrng M LVec R DivRing
10 drngnzr R DivRing R NzRing
11 9 10 syl M LVec R NzRing
12 11 adantr M LVec S 𝒫 B R NzRing
13 1 2 3 4 5 islindeps2 M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M
14 7 8 12 13 syl3anc M LVec S 𝒫 B s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M
15 1 2 3 4 5 islindeps M LVec S 𝒫 B S linDepS M g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
16 df-3an finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
17 r19.42v s S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
18 16 17 bitr4i finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ s S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
19 18 rexbii g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ g E S s S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
20 rexcom g E S s S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
21 19 20 bitri g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
22 simplr M LVec S 𝒫 B s S S 𝒫 B
23 6 ad2antrr M LVec S 𝒫 B s S M LMod
24 simpr M LVec S 𝒫 B s S s S
25 22 23 24 3jca M LVec S 𝒫 B s S S 𝒫 B M LMod s S
26 25 ad2antrr M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ S 𝒫 B M LMod s S
27 simplr M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ g E S
28 elmapi g E S g : S E
29 ffvelrn g : S E s S g s E
30 28 24 29 syl2anr M LVec S 𝒫 B s S g E S g s E
31 simpr finSupp 0 ˙ g g linC M S = Z g s 0 ˙ g s 0 ˙
32 30 31 anim12i M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ g s E g s 0 ˙
33 9 ad2antrr M LVec S 𝒫 B s S R DivRing
34 33 ad2antrr M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ R DivRing
35 eqid Unit R = Unit R
36 4 35 5 drngunit R DivRing g s Unit R g s E g s 0 ˙
37 34 36 syl M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ g s Unit R g s E g s 0 ˙
38 32 37 mpbird M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ g s Unit R
39 simpll finSupp 0 ˙ g g linC M S = Z g s 0 ˙ finSupp 0 ˙ g
40 39 adantl M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ finSupp 0 ˙ g
41 eqid inv g R = inv g R
42 eqid inv r R = inv r R
43 eqid R = R
44 eqid z S s inv r R inv g R g s R g z = z S s inv r R inv g R g s R g z
45 1 3 4 35 5 2 41 42 43 44 lincresunit2 S 𝒫 B M LMod s S g E S g s Unit R finSupp 0 ˙ g finSupp 0 ˙ z S s inv r R inv g R g s R g z
46 26 27 38 40 45 syl13anc M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ finSupp 0 ˙ z S s inv r R inv g R g s R g z
47 simpll M LVec S 𝒫 B s S M LVec
48 22 47 24 3jca M LVec S 𝒫 B s S S 𝒫 B M LVec s S
49 48 ad2antrr M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ S 𝒫 B M LVec s S
50 simprr M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ g s 0 ˙
51 simplr finSupp 0 ˙ g g linC M S = Z g s 0 ˙ g linC M S = Z
52 51 adantl M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ g linC M S = Z
53 fveq2 z = y g z = g y
54 53 oveq2d z = y inv r R inv g R g s R g z = inv r R inv g R g s R g y
55 54 cbvmptv z S s inv r R inv g R g s R g z = y S s inv r R inv g R g s R g y
56 1 3 4 35 5 2 41 42 43 55 lincreslvec3 S 𝒫 B M LVec s S g E S g s 0 ˙ finSupp 0 ˙ g g linC M S = Z z S s inv r R inv g R g s R g z linC M S s = s
57 49 27 50 40 52 56 syl131anc M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ z S s inv r R inv g R g s R g z linC M S s = s
58 1 3 4 35 5 2 41 42 43 44 lincresunit1 S 𝒫 B M LMod s S g E S g s Unit R z S s inv r R inv g R g s R g z E S s
59 26 27 38 58 syl12anc M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ z S s inv r R inv g R g s R g z E S s
60 breq1 f = z S s inv r R inv g R g s R g z finSupp 0 ˙ f finSupp 0 ˙ z S s inv r R inv g R g s R g z
61 oveq1 f = z S s inv r R inv g R g s R g z f linC M S s = z S s inv r R inv g R g s R g z linC M S s
62 61 eqeq1d f = z S s inv r R inv g R g s R g z f linC M S s = s z S s inv r R inv g R g s R g z linC M S s = s
63 60 62 anbi12d f = z S s inv r R inv g R g s R g z finSupp 0 ˙ f f linC M S s = s finSupp 0 ˙ z S s inv r R inv g R g s R g z z S s inv r R inv g R g s R g z linC M S s = s
64 63 adantl M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ f = z S s inv r R inv g R g s R g z finSupp 0 ˙ f f linC M S s = s finSupp 0 ˙ z S s inv r R inv g R g s R g z z S s inv r R inv g R g s R g z linC M S s = s
65 59 64 rspcedv M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ finSupp 0 ˙ z S s inv r R inv g R g s R g z z S s inv r R inv g R g s R g z linC M S s = s f E S s finSupp 0 ˙ f f linC M S s = s
66 46 57 65 mp2and M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ f E S s finSupp 0 ˙ f f linC M S s = s
67 66 rexlimdva2 M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ f E S s finSupp 0 ˙ f f linC M S s = s
68 67 reximdva M LVec S 𝒫 B s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ s S f E S s finSupp 0 ˙ f f linC M S s = s
69 21 68 syl5bi M LVec S 𝒫 B g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ s S f E S s finSupp 0 ˙ f f linC M S s = s
70 15 69 sylbid M LVec S 𝒫 B S linDepS M s S f E S s finSupp 0 ˙ f f linC M S s = s
71 14 70 impbid M LVec S 𝒫 B s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M