Metamath Proof Explorer


Theorem isomuspgrlem2d

Description: Lemma 4 for isomuspgrlem2 . (Contributed by AV, 1-Dec-2022)

Ref Expression
Hypotheses isomushgr.v V=VtxA
isomushgr.w W=VtxB
isomushgr.e E=EdgA
isomushgr.k K=EdgB
isomuspgrlem2.g G=xEFx
isomuspgrlem2.a φAUSHGraph
isomuspgrlem2.f φF:V1-1 ontoW
isomuspgrlem2.i φaVbVabEFaFbK
isomuspgrlem2.x φFX
isomuspgrlem2.b φBUSHGraph
Assertion isomuspgrlem2d φG:EontoK

Proof

Step Hyp Ref Expression
1 isomushgr.v V=VtxA
2 isomushgr.w W=VtxB
3 isomushgr.e E=EdgA
4 isomushgr.k K=EdgB
5 isomuspgrlem2.g G=xEFx
6 isomuspgrlem2.a φAUSHGraph
7 isomuspgrlem2.f φF:V1-1 ontoW
8 isomuspgrlem2.i φaVbVabEFaFbK
9 isomuspgrlem2.x φFX
10 isomuspgrlem2.b φBUSHGraph
11 1 2 3 4 5 6 7 8 isomuspgrlem2b φG:EK
12 uspgrupgr BUSHGraphBUPGraph
13 10 12 syl φBUPGraph
14 2 4 upgredg BUPGraphyKcWdWy=cd
15 13 14 sylan φyKcWdWy=cd
16 eleq1 y=cdyKcdK
17 16 anbi2d y=cdφyKφcdK
18 f1ofo F:V1-1 ontoWF:VontoW
19 7 18 syl φF:VontoW
20 foelrn F:VontoWcWmVc=Fm
21 19 20 sylan φcWmVc=Fm
22 21 ex φcWmVc=Fm
23 foelrn F:VontoWdWnVd=Fn
24 19 23 sylan φdWnVd=Fn
25 24 ex φdWnVd=Fn
26 22 25 anim12d φcWdWmVc=FmnVd=Fn
27 26 adantr φcdKcWdWmVc=FmnVd=Fn
28 27 imp φcdKcWdWmVc=FmnVd=Fn
29 preq12 c=Fmd=Fncd=FmFn
30 29 ancoms d=Fnc=Fmcd=FmFn
31 30 eleq1d d=Fnc=FmcdKFmFnK
32 preq1 a=mab=mb
33 32 eleq1d a=mabEmbE
34 fveq2 a=mFa=Fm
35 34 preq1d a=mFaFb=FmFb
36 35 eleq1d a=mFaFbKFmFbK
37 33 36 bibi12d a=mabEFaFbKmbEFmFbK
38 preq2 b=nmb=mn
39 38 eleq1d b=nmbEmnE
40 fveq2 b=nFb=Fn
41 40 preq2d b=nFmFb=FmFn
42 41 eleq1d b=nFmFbKFmFnK
43 39 42 bibi12d b=nmbEFmFbKmnEFmFnK
44 37 43 rspc2va mVnVaVbVabEFaFbKmnEFmFnK
45 44 bicomd mVnVaVbVabEFaFbKFmFnKmnE
46 45 ancoms aVbVabEFaFbKmVnVFmFnKmnE
47 46 biimpd aVbVabEFaFbKmVnVFmFnKmnE
48 47 ex aVbVabEFaFbKmVnVFmFnKmnE
49 8 48 syl φmVnVFmFnKmnE
50 49 com13 FmFnKmVnVφmnE
51 31 50 syl6bi d=Fnc=FmcdKmVnVφmnE
52 51 com14 φcdKmVnVd=Fnc=FmmnE
53 52 imp φcdKmVnVd=Fnc=FmmnE
54 53 adantr φcdKcWdWmVnVd=Fnc=FmmnE
55 54 imp31 φcdKcWdWmVnVd=Fnc=FmmnE
56 imaeq2 e=mnFe=Fmn
57 f1ofn F:V1-1 ontoWFFnV
58 7 57 syl φFFnV
59 58 ad3antrrr φcdKcWdWmVnVFFnV
60 simprl φcdKcWdWmVnVmV
61 simpr mVnVnV
62 61 adantl φcdKcWdWmVnVnV
63 59 60 62 3jca φcdKcWdWmVnVFFnVmVnV
64 63 adantr φcdKcWdWmVnVd=Fnc=FmFFnVmVnV
65 fnimapr FFnVmVnVFmn=FmFn
66 64 65 syl φcdKcWdWmVnVd=Fnc=FmFmn=FmFn
67 56 66 sylan9eqr φcdKcWdWmVnVd=Fnc=Fme=mnFe=FmFn
68 67 eqeq2d φcdKcWdWmVnVd=Fnc=Fme=mncd=Fecd=FmFn
69 30 adantl φcdKcWdWmVnVd=Fnc=Fmcd=FmFn
70 55 68 69 rspcedvd φcdKcWdWmVnVd=Fnc=FmeEcd=Fe
71 70 ex φcdKcWdWmVnVd=Fnc=FmeEcd=Fe
72 71 anassrs φcdKcWdWmVnVd=Fnc=FmeEcd=Fe
73 72 expd φcdKcWdWmVnVd=Fnc=FmeEcd=Fe
74 73 rexlimdva φcdKcWdWmVnVd=Fnc=FmeEcd=Fe
75 74 com23 φcdKcWdWmVc=FmnVd=FneEcd=Fe
76 75 rexlimdva φcdKcWdWmVc=FmnVd=FneEcd=Fe
77 76 impd φcdKcWdWmVc=FmnVd=FneEcd=Fe
78 28 77 mpd φcdKcWdWeEcd=Fe
79 78 ex φcdKcWdWeEcd=Fe
80 17 79 syl6bi y=cdφyKcWdWeEcd=Fe
81 80 impd y=cdφyKcWdWeEcd=Fe
82 81 impcom φyKcWdWy=cdeEcd=Fe
83 simpr φyKcWdWy=cdy=cd
84 83 adantr φyKcWdWy=cdeEy=cd
85 9 ad4antr φyKcWdWy=cdeEFX
86 1 2 3 4 5 isomuspgrlem2a FXyEFy=Gy
87 85 86 syl φyKcWdWy=cdeEyEFy=Gy
88 imaeq2 y=eFy=Fe
89 fveq2 y=eGy=Ge
90 88 89 eqeq12d y=eFy=GyFe=Ge
91 90 rspcv eEyEFy=GyFe=Ge
92 eqcom Ge=FeFe=Ge
93 91 92 syl6ibr eEyEFy=GyGe=Fe
94 93 adantl φyKcWdWy=cdeEyEFy=GyGe=Fe
95 87 94 mpd φyKcWdWy=cdeEGe=Fe
96 84 95 eqeq12d φyKcWdWy=cdeEy=Gecd=Fe
97 96 rexbidva φyKcWdWy=cdeEy=GeeEcd=Fe
98 82 97 mpbird φyKcWdWy=cdeEy=Ge
99 98 ex φyKcWdWy=cdeEy=Ge
100 99 rexlimdvva φyKcWdWy=cdeEy=Ge
101 15 100 mpd φyKeEy=Ge
102 101 ralrimiva φyKeEy=Ge
103 dffo3 G:EontoKG:EKyKeEy=Ge
104 11 102 103 sylanbrc φG:EontoK