Metamath Proof Explorer


Theorem ispridlc

Description: The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ispridlc.1 G = 1 st R
ispridlc.2 H = 2 nd R
ispridlc.3 X = ran G
Assertion ispridlc R CRingOps P PrIdl R P Idl R P X a X b X a H b P a P b P

Proof

Step Hyp Ref Expression
1 ispridlc.1 G = 1 st R
2 ispridlc.2 H = 2 nd R
3 ispridlc.3 X = ran G
4 crngorngo R CRingOps R RingOps
5 1 2 3 ispridl R RingOps P PrIdl R P Idl R P X r Idl R s Idl R x r y s x H y P r P s P
6 4 5 syl R CRingOps P PrIdl R P Idl R P X r Idl R s Idl R x r y s x H y P r P s P
7 snssi a X a X
8 1 3 igenidl R RingOps a X R IdlGen a Idl R
9 4 7 8 syl2an R CRingOps a X R IdlGen a Idl R
10 9 adantrr R CRingOps a X b X R IdlGen a Idl R
11 snssi b X b X
12 1 3 igenidl R RingOps b X R IdlGen b Idl R
13 4 11 12 syl2an R CRingOps b X R IdlGen b Idl R
14 13 adantrl R CRingOps a X b X R IdlGen b Idl R
15 raleq r = R IdlGen a x r y s x H y P x R IdlGen a y s x H y P
16 sseq1 r = R IdlGen a r P R IdlGen a P
17 16 orbi1d r = R IdlGen a r P s P R IdlGen a P s P
18 15 17 imbi12d r = R IdlGen a x r y s x H y P r P s P x R IdlGen a y s x H y P R IdlGen a P s P
19 raleq s = R IdlGen b y s x H y P y R IdlGen b x H y P
20 19 ralbidv s = R IdlGen b x R IdlGen a y s x H y P x R IdlGen a y R IdlGen b x H y P
21 sseq1 s = R IdlGen b s P R IdlGen b P
22 21 orbi2d s = R IdlGen b R IdlGen a P s P R IdlGen a P R IdlGen b P
23 20 22 imbi12d s = R IdlGen b x R IdlGen a y s x H y P R IdlGen a P s P x R IdlGen a y R IdlGen b x H y P R IdlGen a P R IdlGen b P
24 18 23 rspc2v R IdlGen a Idl R R IdlGen b Idl R r Idl R s Idl R x r y s x H y P r P s P x R IdlGen a y R IdlGen b x H y P R IdlGen a P R IdlGen b P
25 10 14 24 syl2anc R CRingOps a X b X r Idl R s Idl R x r y s x H y P r P s P x R IdlGen a y R IdlGen b x H y P R IdlGen a P R IdlGen b P
26 25 adantlr R CRingOps P Idl R a X b X r Idl R s Idl R x r y s x H y P r P s P x R IdlGen a y R IdlGen b x H y P R IdlGen a P R IdlGen b P
27 1 2 3 prnc R CRingOps a X R IdlGen a = x X | r X x = r H a
28 df-rab x X | r X x = r H a = x | x X r X x = r H a
29 27 28 eqtrdi R CRingOps a X R IdlGen a = x | x X r X x = r H a
30 29 abeq2d R CRingOps a X x R IdlGen a x X r X x = r H a
31 30 adantrr R CRingOps a X b X x R IdlGen a x X r X x = r H a
32 1 2 3 prnc R CRingOps b X R IdlGen b = y X | s X y = s H b
33 df-rab y X | s X y = s H b = y | y X s X y = s H b
34 32 33 eqtrdi R CRingOps b X R IdlGen b = y | y X s X y = s H b
35 34 abeq2d R CRingOps b X y R IdlGen b y X s X y = s H b
36 35 adantrl R CRingOps a X b X y R IdlGen b y X s X y = s H b
37 31 36 anbi12d R CRingOps a X b X x R IdlGen a y R IdlGen b x X r X x = r H a y X s X y = s H b
38 37 adantlr R CRingOps P Idl R a X b X x R IdlGen a y R IdlGen b x X r X x = r H a y X s X y = s H b
39 38 adantr R CRingOps P Idl R a X b X a H b P x R IdlGen a y R IdlGen b x X r X x = r H a y X s X y = s H b
40 reeanv r X s X x = r H a y = s H b r X x = r H a s X y = s H b
41 40 anbi2i x X y X r X s X x = r H a y = s H b x X y X r X x = r H a s X y = s H b
42 an4 x X y X r X x = r H a s X y = s H b x X r X x = r H a y X s X y = s H b
43 41 42 bitri x X y X r X s X x = r H a y = s H b x X r X x = r H a y X s X y = s H b
44 1 2 3 crngm4 R CRingOps r X s X a X b X r H s H a H b = r H a H s H b
45 44 3com23 R CRingOps a X b X r X s X r H s H a H b = r H a H s H b
46 45 3expa R CRingOps a X b X r X s X r H s H a H b = r H a H s H b
47 46 adantllr R CRingOps P Idl R a X b X r X s X r H s H a H b = r H a H s H b
48 47 adantlr R CRingOps P Idl R a X b X a H b P r X s X r H s H a H b = r H a H s H b
49 1 2 3 rngocl R RingOps r X s X r H s X
50 4 49 syl3an1 R CRingOps r X s X r H s X
51 50 3expb R CRingOps r X s X r H s X
52 51 adantlr R CRingOps P Idl R r X s X r H s X
53 52 adantlr R CRingOps P Idl R a H b P r X s X r H s X
54 1 2 3 idllmulcl R RingOps P Idl R a H b P r H s X r H s H a H b P
55 4 54 sylanl1 R CRingOps P Idl R a H b P r H s X r H s H a H b P
56 55 anassrs R CRingOps P Idl R a H b P r H s X r H s H a H b P
57 53 56 syldan R CRingOps P Idl R a H b P r X s X r H s H a H b P
58 57 adantllr R CRingOps P Idl R a X b X a H b P r X s X r H s H a H b P
59 48 58 eqeltrrd R CRingOps P Idl R a X b X a H b P r X s X r H a H s H b P
60 oveq12 x = r H a y = s H b x H y = r H a H s H b
61 60 eleq1d x = r H a y = s H b x H y P r H a H s H b P
62 59 61 syl5ibrcom R CRingOps P Idl R a X b X a H b P r X s X x = r H a y = s H b x H y P
63 62 rexlimdvva R CRingOps P Idl R a X b X a H b P r X s X x = r H a y = s H b x H y P
64 63 adantld R CRingOps P Idl R a X b X a H b P x X y X r X s X x = r H a y = s H b x H y P
65 43 64 syl5bir R CRingOps P Idl R a X b X a H b P x X r X x = r H a y X s X y = s H b x H y P
66 39 65 sylbid R CRingOps P Idl R a X b X a H b P x R IdlGen a y R IdlGen b x H y P
67 66 ralrimivv R CRingOps P Idl R a X b X a H b P x R IdlGen a y R IdlGen b x H y P
68 67 ex R CRingOps P Idl R a X b X a H b P x R IdlGen a y R IdlGen b x H y P
69 1 3 igenss R RingOps a X a R IdlGen a
70 4 7 69 syl2an R CRingOps a X a R IdlGen a
71 vex a V
72 71 snss a R IdlGen a a R IdlGen a
73 70 72 sylibr R CRingOps a X a R IdlGen a
74 73 adantrr R CRingOps a X b X a R IdlGen a
75 ssel R IdlGen a P a R IdlGen a a P
76 74 75 syl5com R CRingOps a X b X R IdlGen a P a P
77 1 3 igenss R RingOps b X b R IdlGen b
78 4 11 77 syl2an R CRingOps b X b R IdlGen b
79 vex b V
80 79 snss b R IdlGen b b R IdlGen b
81 78 80 sylibr R CRingOps b X b R IdlGen b
82 81 adantrl R CRingOps a X b X b R IdlGen b
83 ssel R IdlGen b P b R IdlGen b b P
84 82 83 syl5com R CRingOps a X b X R IdlGen b P b P
85 76 84 orim12d R CRingOps a X b X R IdlGen a P R IdlGen b P a P b P
86 85 adantlr R CRingOps P Idl R a X b X R IdlGen a P R IdlGen b P a P b P
87 68 86 imim12d R CRingOps P Idl R a X b X x R IdlGen a y R IdlGen b x H y P R IdlGen a P R IdlGen b P a H b P a P b P
88 26 87 syld R CRingOps P Idl R a X b X r Idl R s Idl R x r y s x H y P r P s P a H b P a P b P
89 88 ralrimdvva R CRingOps P Idl R r Idl R s Idl R x r y s x H y P r P s P a X b X a H b P a P b P
90 89 ex R CRingOps P Idl R r Idl R s Idl R x r y s x H y P r P s P a X b X a H b P a P b P
91 90 adantrd R CRingOps P Idl R P X r Idl R s Idl R x r y s x H y P r P s P a X b X a H b P a P b P
92 91 imdistand R CRingOps P Idl R P X r Idl R s Idl R x r y s x H y P r P s P P Idl R P X a X b X a H b P a P b P
93 df-3an P Idl R P X r Idl R s Idl R x r y s x H y P r P s P P Idl R P X r Idl R s Idl R x r y s x H y P r P s P
94 df-3an P Idl R P X a X b X a H b P a P b P P Idl R P X a X b X a H b P a P b P
95 92 93 94 3imtr4g R CRingOps P Idl R P X r Idl R s Idl R x r y s x H y P r P s P P Idl R P X a X b X a H b P a P b P
96 6 95 sylbid R CRingOps P PrIdl R P Idl R P X a X b X a H b P a P b P
97 1 2 3 ispridl2 R RingOps P Idl R P X a X b X a H b P a P b P P PrIdl R
98 97 ex R RingOps P Idl R P X a X b X a H b P a P b P P PrIdl R
99 4 98 syl R CRingOps P Idl R P X a X b X a H b P a P b P P PrIdl R
100 96 99 impbid R CRingOps P PrIdl R P Idl R P X a X b X a H b P a P b P