Metamath Proof Explorer


Theorem isreg2

Description: A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion isreg2 JTopOnXJRegcClsdJxX¬xcoJpJcoxpop=

Proof

Step Hyp Ref Expression
1 simp1r JTopOnXJRegcClsdJxX¬xcJReg
2 simp2l JTopOnXJRegcClsdJxX¬xccClsdJ
3 simp2r JTopOnXJRegcClsdJxX¬xcxX
4 simp1l JTopOnXJRegcClsdJxX¬xcJTopOnX
5 toponuni JTopOnXX=J
6 4 5 syl JTopOnXJRegcClsdJxX¬xcX=J
7 3 6 eleqtrd JTopOnXJRegcClsdJxX¬xcxJ
8 simp3 JTopOnXJRegcClsdJxX¬xc¬xc
9 eqid J=J
10 9 regsep2 JRegcClsdJxJ¬xcoJpJcoxpop=
11 1 2 7 8 10 syl13anc JTopOnXJRegcClsdJxX¬xcoJpJcoxpop=
12 11 3expia JTopOnXJRegcClsdJxX¬xcoJpJcoxpop=
13 12 ralrimivva JTopOnXJRegcClsdJxX¬xcoJpJcoxpop=
14 topontop JTopOnXJTop
15 14 adantr JTopOnXcClsdJxX¬xcoJpJcoxpop=JTop
16 5 adantr JTopOnXyJX=J
17 16 difeq1d JTopOnXyJXy=Jy
18 9 opncld JTopyJJyClsdJ
19 14 18 sylan JTopOnXyJJyClsdJ
20 17 19 eqeltrd JTopOnXyJXyClsdJ
21 eleq2 c=XyxcxXy
22 21 notbid c=Xy¬xc¬xXy
23 eldif xXyxX¬xy
24 23 baibr xX¬xyxXy
25 24 con1bid xX¬xXyxy
26 22 25 sylan9bb c=XyxX¬xcxy
27 simpl c=XyxXc=Xy
28 27 sseq1d c=XyxXcoXyo
29 28 3anbi1d c=XyxXcoxpop=Xyoxpop=
30 29 2rexbidv c=XyxXoJpJcoxpop=oJpJXyoxpop=
31 26 30 imbi12d c=XyxX¬xcoJpJcoxpop=xyoJpJXyoxpop=
32 31 ralbidva c=XyxX¬xcoJpJcoxpop=xXxyoJpJXyoxpop=
33 32 rspcv XyClsdJcClsdJxX¬xcoJpJcoxpop=xXxyoJpJXyoxpop=
34 20 33 syl JTopOnXyJcClsdJxX¬xcoJpJcoxpop=xXxyoJpJXyoxpop=
35 ralcom3 xXxyoJpJXyoxpop=xyxXoJpJXyoxpop=
36 toponss JTopOnXyJyX
37 36 sselda JTopOnXyJxyxX
38 simprr2 JTopOnXyJxyoJpJXyoxpop=xp
39 5 ad3antrrr JTopOnXyJxyoJpJXyoxpop=X=J
40 39 difeq1d JTopOnXyJxyoJpJXyoxpop=Xo=Jo
41 14 ad3antrrr JTopOnXyJxyoJpJXyoxpop=JTop
42 simprll JTopOnXyJxyoJpJXyoxpop=oJ
43 9 opncld JTopoJJoClsdJ
44 41 42 43 syl2anc JTopOnXyJxyoJpJXyoxpop=JoClsdJ
45 40 44 eqeltrd JTopOnXyJxyoJpJXyoxpop=XoClsdJ
46 incom po=op
47 simprr3 JTopOnXyJxyoJpJXyoxpop=op=
48 46 47 eqtrid JTopOnXyJxyoJpJXyoxpop=po=
49 simplll JTopOnXyJxyoJpJXyoxpop=JTopOnX
50 simprlr JTopOnXyJxyoJpJXyoxpop=pJ
51 toponss JTopOnXpJpX
52 49 50 51 syl2anc JTopOnXyJxyoJpJXyoxpop=pX
53 reldisj pXpo=pXo
54 52 53 syl JTopOnXyJxyoJpJXyoxpop=po=pXo
55 48 54 mpbid JTopOnXyJxyoJpJXyoxpop=pXo
56 9 clsss2 XoClsdJpXoclsJpXo
57 45 55 56 syl2anc JTopOnXyJxyoJpJXyoxpop=clsJpXo
58 simprr1 JTopOnXyJxyoJpJXyoxpop=Xyo
59 difcom XyoXoy
60 58 59 sylib JTopOnXyJxyoJpJXyoxpop=Xoy
61 57 60 sstrd JTopOnXyJxyoJpJXyoxpop=clsJpy
62 38 61 jca JTopOnXyJxyoJpJXyoxpop=xpclsJpy
63 62 expr JTopOnXyJxyoJpJXyoxpop=xpclsJpy
64 63 anassrs JTopOnXyJxyoJpJXyoxpop=xpclsJpy
65 64 reximdva JTopOnXyJxyoJpJXyoxpop=pJxpclsJpy
66 65 rexlimdva JTopOnXyJxyoJpJXyoxpop=pJxpclsJpy
67 37 66 embantd JTopOnXyJxyxXoJpJXyoxpop=pJxpclsJpy
68 67 ralimdva JTopOnXyJxyxXoJpJXyoxpop=xypJxpclsJpy
69 35 68 biimtrid JTopOnXyJxXxyoJpJXyoxpop=xypJxpclsJpy
70 34 69 syld JTopOnXyJcClsdJxX¬xcoJpJcoxpop=xypJxpclsJpy
71 70 ralrimdva JTopOnXcClsdJxX¬xcoJpJcoxpop=yJxypJxpclsJpy
72 71 imp JTopOnXcClsdJxX¬xcoJpJcoxpop=yJxypJxpclsJpy
73 isreg JRegJTopyJxypJxpclsJpy
74 15 72 73 sylanbrc JTopOnXcClsdJxX¬xcoJpJcoxpop=JReg
75 13 74 impbida JTopOnXJRegcClsdJxX¬xcoJpJcoxpop=