| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1r |
|
| 2 |
|
simp2l |
|
| 3 |
|
simp2r |
|
| 4 |
|
simp1l |
|
| 5 |
|
toponuni |
|
| 6 |
4 5
|
syl |
|
| 7 |
3 6
|
eleqtrd |
|
| 8 |
|
simp3 |
|
| 9 |
|
eqid |
|
| 10 |
9
|
regsep2 |
|
| 11 |
1 2 7 8 10
|
syl13anc |
|
| 12 |
11
|
3expia |
|
| 13 |
12
|
ralrimivva |
|
| 14 |
|
topontop |
|
| 15 |
14
|
adantr |
|
| 16 |
5
|
adantr |
|
| 17 |
16
|
difeq1d |
|
| 18 |
9
|
opncld |
|
| 19 |
14 18
|
sylan |
|
| 20 |
17 19
|
eqeltrd |
|
| 21 |
|
eleq2 |
|
| 22 |
21
|
notbid |
|
| 23 |
|
eldif |
|
| 24 |
23
|
baibr |
|
| 25 |
24
|
con1bid |
|
| 26 |
22 25
|
sylan9bb |
|
| 27 |
|
simpl |
|
| 28 |
27
|
sseq1d |
|
| 29 |
28
|
3anbi1d |
|
| 30 |
29
|
2rexbidv |
|
| 31 |
26 30
|
imbi12d |
|
| 32 |
31
|
ralbidva |
|
| 33 |
32
|
rspcv |
|
| 34 |
20 33
|
syl |
|
| 35 |
|
ralcom3 |
|
| 36 |
|
toponss |
|
| 37 |
36
|
sselda |
|
| 38 |
|
simprr2 |
|
| 39 |
5
|
ad3antrrr |
|
| 40 |
39
|
difeq1d |
|
| 41 |
14
|
ad3antrrr |
|
| 42 |
|
simprll |
|
| 43 |
9
|
opncld |
|
| 44 |
41 42 43
|
syl2anc |
|
| 45 |
40 44
|
eqeltrd |
|
| 46 |
|
incom |
|
| 47 |
|
simprr3 |
|
| 48 |
46 47
|
eqtrid |
|
| 49 |
|
simplll |
|
| 50 |
|
simprlr |
|
| 51 |
|
toponss |
|
| 52 |
49 50 51
|
syl2anc |
|
| 53 |
|
reldisj |
|
| 54 |
52 53
|
syl |
|
| 55 |
48 54
|
mpbid |
|
| 56 |
9
|
clsss2 |
|
| 57 |
45 55 56
|
syl2anc |
|
| 58 |
|
simprr1 |
|
| 59 |
|
difcom |
|
| 60 |
58 59
|
sylib |
|
| 61 |
57 60
|
sstrd |
|
| 62 |
38 61
|
jca |
|
| 63 |
62
|
expr |
|
| 64 |
63
|
anassrs |
|
| 65 |
64
|
reximdva |
|
| 66 |
65
|
rexlimdva |
|
| 67 |
37 66
|
embantd |
|
| 68 |
67
|
ralimdva |
|
| 69 |
35 68
|
biimtrid |
|
| 70 |
34 69
|
syld |
|
| 71 |
70
|
ralrimdva |
|
| 72 |
71
|
imp |
|
| 73 |
|
isreg |
|
| 74 |
15 72 73
|
sylanbrc |
|
| 75 |
13 74
|
impbida |
|