| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmflem.s |  | 
						
							| 2 |  | issmflem.d |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 |  | df-smblfn |  | 
						
							| 5 |  | unieq |  | 
						
							| 6 | 5 | oveq2d |  | 
						
							| 7 | 6 | rabeqdv |  | 
						
							| 8 |  | oveq1 |  | 
						
							| 9 | 8 | eleq2d |  | 
						
							| 10 | 9 | ralbidv |  | 
						
							| 11 | 10 | rabbidv |  | 
						
							| 12 | 7 11 | eqtrd |  | 
						
							| 13 |  | ovex |  | 
						
							| 14 | 13 | rabex |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 4 12 1 15 | fvmptd3 |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 3 17 | eleqtrd |  | 
						
							| 19 |  | elrabi |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | elpmi2 |  | 
						
							| 22 | 2 21 | eqsstrid |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 20 23 | syldan |  | 
						
							| 25 |  | elpmi |  | 
						
							| 26 | 20 25 | syl |  | 
						
							| 27 | 26 | simpld |  | 
						
							| 28 | 2 | feq2i |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 27 29 | mpbird |  | 
						
							| 31 |  | cnveq |  | 
						
							| 32 | 31 | imaeq1d |  | 
						
							| 33 |  | dmeq |  | 
						
							| 34 | 33 | oveq2d |  | 
						
							| 35 | 32 34 | eleq12d |  | 
						
							| 36 | 35 | ralbidv |  | 
						
							| 37 | 36 | elrab |  | 
						
							| 38 | 37 | simprbi |  | 
						
							| 39 | 18 38 | syl |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 |  | rspa |  | 
						
							| 43 | 40 41 42 | syl2anc |  | 
						
							| 44 | 30 | adantr |  | 
						
							| 45 |  | simpl |  | 
						
							| 46 |  | simpr |  | 
						
							| 47 | 46 | rexrd |  | 
						
							| 48 | 45 47 | preimaioomnf |  | 
						
							| 49 | 48 | eqcomd |  | 
						
							| 50 | 44 41 49 | syl2anc |  | 
						
							| 51 | 2 | oveq2i |  | 
						
							| 52 | 51 | a1i |  | 
						
							| 53 | 50 52 | eleq12d |  | 
						
							| 54 | 43 53 | mpbird |  | 
						
							| 55 | 54 | ralrimiva |  | 
						
							| 56 | 24 30 55 | 3jca |  | 
						
							| 57 | 56 | ex |  | 
						
							| 58 |  | reex |  | 
						
							| 59 | 58 | a1i |  | 
						
							| 60 | 1 | uniexd |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 |  | simprr |  | 
						
							| 63 |  | fssxp |  | 
						
							| 64 | 63 | adantl |  | 
						
							| 65 |  | xpss1 |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 | 64 66 | sstrd |  | 
						
							| 68 | 67 | adantl |  | 
						
							| 69 |  | dmss |  | 
						
							| 70 |  | dmxpss |  | 
						
							| 71 | 70 | a1i |  | 
						
							| 72 | 69 71 | sstrd |  | 
						
							| 73 | 72 | adantl |  | 
						
							| 74 | 2 73 | eqsstrid |  | 
						
							| 75 | 68 74 | syldan |  | 
						
							| 76 |  | elpm2r |  | 
						
							| 77 | 59 61 62 75 76 | syl22anc |  | 
						
							| 78 | 77 | 3adantr3 |  | 
						
							| 79 | 2 | a1i |  | 
						
							| 80 | 79 | oveq2d |  | 
						
							| 81 | 49 80 | eleq12d |  | 
						
							| 82 | 81 | ralbidva |  | 
						
							| 83 | 82 | biimpd |  | 
						
							| 84 | 83 | imp |  | 
						
							| 85 | 84 | adantl |  | 
						
							| 86 | 85 | 3adantr1 |  | 
						
							| 87 | 78 86 | jca |  | 
						
							| 88 | 87 37 | sylibr |  | 
						
							| 89 | 16 | eqcomd |  | 
						
							| 90 | 89 | adantr |  | 
						
							| 91 | 88 90 | eleqtrd |  | 
						
							| 92 | 91 | ex |  | 
						
							| 93 | 57 92 | impbid |  |