Metamath Proof Explorer


Theorem issmflem

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmflem.s φSSAlg
issmflem.d D=domF
Assertion issmflem φFSMblFnSDSF:DaxD|Fx<aS𝑡D

Proof

Step Hyp Ref Expression
1 issmflem.s φSSAlg
2 issmflem.d D=domF
3 simpr φFSMblFnSFSMblFnS
4 df-smblfn SMblFn=sSAlgf𝑝𝑚s|af-1−∞as𝑡domf
5 unieq s=Ss=S
6 5 oveq2d s=S𝑝𝑚s=𝑝𝑚S
7 6 rabeqdv s=Sf𝑝𝑚s|af-1−∞as𝑡domf=f𝑝𝑚S|af-1−∞as𝑡domf
8 oveq1 s=Ss𝑡domf=S𝑡domf
9 8 eleq2d s=Sf-1−∞as𝑡domff-1−∞aS𝑡domf
10 9 ralbidv s=Saf-1−∞as𝑡domfaf-1−∞aS𝑡domf
11 10 rabbidv s=Sf𝑝𝑚S|af-1−∞as𝑡domf=f𝑝𝑚S|af-1−∞aS𝑡domf
12 7 11 eqtrd s=Sf𝑝𝑚s|af-1−∞as𝑡domf=f𝑝𝑚S|af-1−∞aS𝑡domf
13 ovex 𝑝𝑚SV
14 13 rabex f𝑝𝑚S|af-1−∞aS𝑡domfV
15 14 a1i φf𝑝𝑚S|af-1−∞aS𝑡domfV
16 4 12 1 15 fvmptd3 φSMblFnS=f𝑝𝑚S|af-1−∞aS𝑡domf
17 16 adantr φFSMblFnSSMblFnS=f𝑝𝑚S|af-1−∞aS𝑡domf
18 3 17 eleqtrd φFSMblFnSFf𝑝𝑚S|af-1−∞aS𝑡domf
19 elrabi Ff𝑝𝑚S|af-1−∞aS𝑡domfF𝑝𝑚S
20 18 19 syl φFSMblFnSF𝑝𝑚S
21 elpmi2 F𝑝𝑚SdomFS
22 2 21 eqsstrid F𝑝𝑚SDS
23 22 adantl φF𝑝𝑚SDS
24 20 23 syldan φFSMblFnSDS
25 elpmi F𝑝𝑚SF:domFdomFS
26 20 25 syl φFSMblFnSF:domFdomFS
27 26 simpld φFSMblFnSF:domF
28 2 feq2i F:DF:domF
29 28 a1i φFSMblFnSF:DF:domF
30 27 29 mpbird φFSMblFnSF:D
31 cnveq f=Ff-1=F-1
32 31 imaeq1d f=Ff-1−∞a=F-1−∞a
33 dmeq f=Fdomf=domF
34 33 oveq2d f=FS𝑡domf=S𝑡domF
35 32 34 eleq12d f=Ff-1−∞aS𝑡domfF-1−∞aS𝑡domF
36 35 ralbidv f=Faf-1−∞aS𝑡domfaF-1−∞aS𝑡domF
37 36 elrab Ff𝑝𝑚S|af-1−∞aS𝑡domfF𝑝𝑚SaF-1−∞aS𝑡domF
38 37 simprbi Ff𝑝𝑚S|af-1−∞aS𝑡domfaF-1−∞aS𝑡domF
39 18 38 syl φFSMblFnSaF-1−∞aS𝑡domF
40 39 adantr φFSMblFnSaaF-1−∞aS𝑡domF
41 simpr φFSMblFnSaa
42 rspa aF-1−∞aS𝑡domFaF-1−∞aS𝑡domF
43 40 41 42 syl2anc φFSMblFnSaF-1−∞aS𝑡domF
44 30 adantr φFSMblFnSaF:D
45 simpl F:DaF:D
46 simpr F:Daa
47 46 rexrd F:Daa*
48 45 47 preimaioomnf F:DaF-1−∞a=xD|Fx<a
49 48 eqcomd F:DaxD|Fx<a=F-1−∞a
50 44 41 49 syl2anc φFSMblFnSaxD|Fx<a=F-1−∞a
51 2 oveq2i S𝑡D=S𝑡domF
52 51 a1i φFSMblFnSaS𝑡D=S𝑡domF
53 50 52 eleq12d φFSMblFnSaxD|Fx<aS𝑡DF-1−∞aS𝑡domF
54 43 53 mpbird φFSMblFnSaxD|Fx<aS𝑡D
55 54 ralrimiva φFSMblFnSaxD|Fx<aS𝑡D
56 24 30 55 3jca φFSMblFnSDSF:DaxD|Fx<aS𝑡D
57 56 ex φFSMblFnSDSF:DaxD|Fx<aS𝑡D
58 reex V
59 58 a1i φDSF:DV
60 1 uniexd φSV
61 60 adantr φDSF:DSV
62 simprr φDSF:DF:D
63 fssxp F:DFD×
64 63 adantl DSF:DFD×
65 xpss1 DSD×S×
66 65 adantr DSF:DD×S×
67 64 66 sstrd DSF:DFS×
68 67 adantl φDSF:DFS×
69 dmss FS×domFdomS×
70 dmxpss domS×S
71 70 a1i FS×domS×S
72 69 71 sstrd FS×domFS
73 72 adantl φFS×domFS
74 2 73 eqsstrid φFS×DS
75 68 74 syldan φDSF:DDS
76 elpm2r VSVF:DDSF𝑝𝑚S
77 59 61 62 75 76 syl22anc φDSF:DF𝑝𝑚S
78 77 3adantr3 φDSF:DaxD|Fx<aS𝑡DF𝑝𝑚S
79 2 a1i F:DaD=domF
80 79 oveq2d F:DaS𝑡D=S𝑡domF
81 49 80 eleq12d F:DaxD|Fx<aS𝑡DF-1−∞aS𝑡domF
82 81 ralbidva F:DaxD|Fx<aS𝑡DaF-1−∞aS𝑡domF
83 82 biimpd F:DaxD|Fx<aS𝑡DaF-1−∞aS𝑡domF
84 83 imp F:DaxD|Fx<aS𝑡DaF-1−∞aS𝑡domF
85 84 adantl φF:DaxD|Fx<aS𝑡DaF-1−∞aS𝑡domF
86 85 3adantr1 φDSF:DaxD|Fx<aS𝑡DaF-1−∞aS𝑡domF
87 78 86 jca φDSF:DaxD|Fx<aS𝑡DF𝑝𝑚SaF-1−∞aS𝑡domF
88 87 37 sylibr φDSF:DaxD|Fx<aS𝑡DFf𝑝𝑚S|af-1−∞aS𝑡domf
89 16 eqcomd φf𝑝𝑚S|af-1−∞aS𝑡domf=SMblFnS
90 89 adantr φDSF:DaxD|Fx<aS𝑡Df𝑝𝑚S|af-1−∞aS𝑡domf=SMblFnS
91 88 90 eleqtrd φDSF:DaxD|Fx<aS𝑡DFSMblFnS
92 91 ex φDSF:DaxD|Fx<aS𝑡DFSMblFnS
93 57 92 impbid φFSMblFnSDSF:DaxD|Fx<aS𝑡D