Metamath Proof Explorer


Theorem itgmulc2nclem2

Description: Lemma for itgmulc2nc ; cf. itgmulc2lem2 . (Contributed by Brendan Leahy, 19-Nov-2017)

Ref Expression
Hypotheses itgmulc2nc.1 φC
itgmulc2nc.2 φxABV
itgmulc2nc.3 φxAB𝐿1
itgmulc2nc.m φxACBMblFn
itgmulc2nc.4 φC
itgmulc2nc.5 φxAB
Assertion itgmulc2nclem2 φCABdx=ACBdx

Proof

Step Hyp Ref Expression
1 itgmulc2nc.1 φC
2 itgmulc2nc.2 φxABV
3 itgmulc2nc.3 φxAB𝐿1
4 itgmulc2nc.m φxACBMblFn
5 itgmulc2nc.4 φC
6 itgmulc2nc.5 φxAB
7 max0sub Cif0CC0if0CC0=C
8 5 7 syl φif0CC0if0CC0=C
9 8 oveq1d φif0CC0if0CC0B=CB
10 9 adantr φxAif0CC0if0CC0B=CB
11 0re 0
12 ifcl C0if0CC0
13 5 11 12 sylancl φif0CC0
14 13 recnd φif0CC0
15 14 adantr φxAif0CC0
16 5 renegcld φC
17 ifcl C0if0CC0
18 16 11 17 sylancl φif0CC0
19 18 recnd φif0CC0
20 19 adantr φxAif0CC0
21 6 recnd φxAB
22 15 20 21 subdird φxAif0CC0if0CC0B=if0CC0Bif0CC0B
23 10 22 eqtr3d φxACB=if0CC0Bif0CC0B
24 23 itgeq2dv φACBdx=Aif0CC0Bif0CC0Bdx
25 ovexd φxAif0CC0BV
26 ovexd φxACBV
27 4 26 mbfdm2 φAdomvol
28 13 adantr φxAif0CC0
29 fconstmpt A×if0CC0=xAif0CC0
30 29 a1i φA×if0CC0=xAif0CC0
31 eqidd φxAB=xAB
32 27 28 6 30 31 offval2 φA×if0CC0×fxAB=xAif0CC0B
33 iblmbf xAB𝐿1xABMblFn
34 3 33 syl φxABMblFn
35 21 fmpttd φxAB:A
36 34 13 35 mbfmulc2re φA×if0CC0×fxABMblFn
37 32 36 eqeltrrd φxAif0CC0BMblFn
38 14 6 3 37 iblmulc2nc φxAif0CC0B𝐿1
39 ovexd φxAif0CC0BV
40 18 adantr φxAif0CC0
41 fconstmpt A×if0CC0=xAif0CC0
42 41 a1i φA×if0CC0=xAif0CC0
43 27 40 6 42 31 offval2 φA×if0CC0×fxAB=xAif0CC0B
44 34 18 35 mbfmulc2re φA×if0CC0×fxABMblFn
45 43 44 eqeltrrd φxAif0CC0BMblFn
46 19 6 3 45 iblmulc2nc φxAif0CC0B𝐿1
47 23 mpteq2dva φxACB=xAif0CC0Bif0CC0B
48 47 4 eqeltrrd φxAif0CC0Bif0CC0BMblFn
49 25 38 39 46 48 itgsubnc φAif0CC0Bif0CC0Bdx=Aif0CC0BdxAif0CC0Bdx
50 ovexd φxAif0CC0if0BB0V
51 ifcl B0if0BB0
52 6 11 51 sylancl φxAif0BB0
53 6 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
54 3 53 mpbid φxAif0BB0𝐿1xAif0BB0𝐿1
55 54 simpld φxAif0BB0𝐿1
56 eqidd φxAif0BB0=xAif0BB0
57 27 28 52 30 56 offval2 φA×if0CC0×fxAif0BB0=xAif0CC0if0BB0
58 6 34 mbfpos φxAif0BB0MblFn
59 52 recnd φxAif0BB0
60 59 fmpttd φxAif0BB0:A
61 58 13 60 mbfmulc2re φA×if0CC0×fxAif0BB0MblFn
62 57 61 eqeltrrd φxAif0CC0if0BB0MblFn
63 14 52 55 62 iblmulc2nc φxAif0CC0if0BB0𝐿1
64 ovexd φxAif0CC0if0BB0V
65 6 renegcld φxAB
66 ifcl B0if0BB0
67 65 11 66 sylancl φxAif0BB0
68 54 simprd φxAif0BB0𝐿1
69 eqidd φxAif0BB0=xAif0BB0
70 27 28 67 30 69 offval2 φA×if0CC0×fxAif0BB0=xAif0CC0if0BB0
71 6 34 mbfneg φxABMblFn
72 65 71 mbfpos φxAif0BB0MblFn
73 67 recnd φxAif0BB0
74 73 fmpttd φxAif0BB0:A
75 72 13 74 mbfmulc2re φA×if0CC0×fxAif0BB0MblFn
76 70 75 eqeltrrd φxAif0CC0if0BB0MblFn
77 14 67 68 76 iblmulc2nc φxAif0CC0if0BB0𝐿1
78 max0sub Bif0BB0if0BB0=B
79 6 78 syl φxAif0BB0if0BB0=B
80 79 oveq2d φxAif0CC0if0BB0if0BB0=if0CC0B
81 15 59 73 subdid φxAif0CC0if0BB0if0BB0=if0CC0if0BB0if0CC0if0BB0
82 80 81 eqtr3d φxAif0CC0B=if0CC0if0BB0if0CC0if0BB0
83 82 mpteq2dva φxAif0CC0B=xAif0CC0if0BB0if0CC0if0BB0
84 32 83 eqtrd φA×if0CC0×fxAB=xAif0CC0if0BB0if0CC0if0BB0
85 84 36 eqeltrrd φxAif0CC0if0BB0if0CC0if0BB0MblFn
86 50 63 64 77 85 itgsubnc φAif0CC0if0BB0if0CC0if0BB0dx=Aif0CC0if0BB0dxAif0CC0if0BB0dx
87 82 itgeq2dv φAif0CC0Bdx=Aif0CC0if0BB0if0CC0if0BB0dx
88 6 3 itgreval φABdx=Aif0BB0dxAif0BB0dx
89 88 oveq2d φif0CC0ABdx=if0CC0Aif0BB0dxAif0BB0dx
90 52 55 itgcl φAif0BB0dx
91 67 68 itgcl φAif0BB0dx
92 14 90 91 subdid φif0CC0Aif0BB0dxAif0BB0dx=if0CC0Aif0BB0dxif0CC0Aif0BB0dx
93 max1 0C0if0CC0
94 11 5 93 sylancr φ0if0CC0
95 max1 0B0if0BB0
96 11 6 95 sylancr φxA0if0BB0
97 14 52 55 62 13 52 94 96 itgmulc2nclem1 φif0CC0Aif0BB0dx=Aif0CC0if0BB0dx
98 max1 0B0if0BB0
99 11 65 98 sylancr φxA0if0BB0
100 14 67 68 76 13 67 94 99 itgmulc2nclem1 φif0CC0Aif0BB0dx=Aif0CC0if0BB0dx
101 97 100 oveq12d φif0CC0Aif0BB0dxif0CC0Aif0BB0dx=Aif0CC0if0BB0dxAif0CC0if0BB0dx
102 89 92 101 3eqtrd φif0CC0ABdx=Aif0CC0if0BB0dxAif0CC0if0BB0dx
103 86 87 102 3eqtr4d φAif0CC0Bdx=if0CC0ABdx
104 ovexd φxAif0CC0if0BB0V
105 27 40 52 42 56 offval2 φA×if0CC0×fxAif0BB0=xAif0CC0if0BB0
106 58 18 60 mbfmulc2re φA×if0CC0×fxAif0BB0MblFn
107 105 106 eqeltrrd φxAif0CC0if0BB0MblFn
108 19 52 55 107 iblmulc2nc φxAif0CC0if0BB0𝐿1
109 ovexd φxAif0CC0if0BB0V
110 27 40 67 42 69 offval2 φA×if0CC0×fxAif0BB0=xAif0CC0if0BB0
111 72 18 74 mbfmulc2re φA×if0CC0×fxAif0BB0MblFn
112 110 111 eqeltrrd φxAif0CC0if0BB0MblFn
113 19 67 68 112 iblmulc2nc φxAif0CC0if0BB0𝐿1
114 79 oveq2d φxAif0CC0if0BB0if0BB0=if0CC0B
115 20 59 73 subdid φxAif0CC0if0BB0if0BB0=if0CC0if0BB0if0CC0if0BB0
116 114 115 eqtr3d φxAif0CC0B=if0CC0if0BB0if0CC0if0BB0
117 116 mpteq2dva φxAif0CC0B=xAif0CC0if0BB0if0CC0if0BB0
118 43 117 eqtrd φA×if0CC0×fxAB=xAif0CC0if0BB0if0CC0if0BB0
119 118 44 eqeltrrd φxAif0CC0if0BB0if0CC0if0BB0MblFn
120 104 108 109 113 119 itgsubnc φAif0CC0if0BB0if0CC0if0BB0dx=Aif0CC0if0BB0dxAif0CC0if0BB0dx
121 116 itgeq2dv φAif0CC0Bdx=Aif0CC0if0BB0if0CC0if0BB0dx
122 88 oveq2d φif0CC0ABdx=if0CC0Aif0BB0dxAif0BB0dx
123 19 90 91 subdid φif0CC0Aif0BB0dxAif0BB0dx=if0CC0Aif0BB0dxif0CC0Aif0BB0dx
124 max1 0C0if0CC0
125 11 16 124 sylancr φ0if0CC0
126 19 52 55 107 18 52 125 96 itgmulc2nclem1 φif0CC0Aif0BB0dx=Aif0CC0if0BB0dx
127 19 67 68 112 18 67 125 99 itgmulc2nclem1 φif0CC0Aif0BB0dx=Aif0CC0if0BB0dx
128 126 127 oveq12d φif0CC0Aif0BB0dxif0CC0Aif0BB0dx=Aif0CC0if0BB0dxAif0CC0if0BB0dx
129 122 123 128 3eqtrd φif0CC0ABdx=Aif0CC0if0BB0dxAif0CC0if0BB0dx
130 120 121 129 3eqtr4d φAif0CC0Bdx=if0CC0ABdx
131 103 130 oveq12d φAif0CC0BdxAif0CC0Bdx=if0CC0ABdxif0CC0ABdx
132 6 3 itgcl φABdx
133 14 19 132 subdird φif0CC0if0CC0ABdx=if0CC0ABdxif0CC0ABdx
134 8 oveq1d φif0CC0if0CC0ABdx=CABdx
135 131 133 134 3eqtr2d φAif0CC0BdxAif0CC0Bdx=CABdx
136 24 49 135 3eqtrrd φCABdx=ACBdx