Metamath Proof Explorer


Theorem itgsin0pilem1

Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypothesis itgsin0pilem1.1 C = t 0 π cos t
Assertion itgsin0pilem1 0 π sin x dx = 2

Proof

Step Hyp Ref Expression
1 itgsin0pilem1.1 C = t 0 π cos t
2 fveq2 t = x cos t = cos x
3 2 negeqd t = x cos t = cos x
4 3 cbvmptv t 0 π cos t = x 0 π cos x
5 1 4 eqtri C = x 0 π cos x
6 5 oveq2i D C = dx 0 π cos x d x
7 ax-resscn
8 7 a1i
9 0re 0
10 pire π
11 iccssre 0 π 0 π
12 9 10 11 mp2an 0 π
13 12 a1i 0 π
14 12 7 sstri 0 π
15 14 sseli x 0 π x
16 15 coscld x 0 π cos x
17 16 adantl x 0 π cos x
18 17 negcld x 0 π cos x
19 eqid TopOpen fld = TopOpen fld
20 19 tgioo2 topGen ran . = TopOpen fld 𝑡
21 iccntr 0 π int topGen ran . 0 π = 0 π
22 9 10 21 mp2an int topGen ran . 0 π = 0 π
23 22 a1i int topGen ran . 0 π = 0 π
24 8 13 18 20 19 23 dvmptntr dx 0 π cos x d x = dx 0 π cos x d x
25 24 mptru dx 0 π cos x d x = dx 0 π cos x d x
26 reelprrecn
27 26 a1i
28 recn x x
29 28 coscld x cos x
30 29 adantl x cos x
31 30 negcld x cos x
32 28 sincld x sin x
33 32 adantl x sin x
34 32 negcld x sin x
35 34 adantl x sin x
36 dvcosre dx cos x d x = x sin x
37 36 a1i dx cos x d x = x sin x
38 27 30 35 37 dvmptneg dx cos x d x = x sin x
39 32 negnegd x sin x = sin x
40 39 mpteq2ia x sin x = x sin x
41 38 40 eqtrdi dx cos x d x = x sin x
42 ioossre 0 π
43 42 a1i 0 π
44 iooretop 0 π topGen ran .
45 44 a1i 0 π topGen ran .
46 27 31 33 41 43 20 19 45 dvmptres dx 0 π cos x d x = x 0 π sin x
47 46 mptru dx 0 π cos x d x = x 0 π sin x
48 6 25 47 3eqtri D C = x 0 π sin x
49 48 fveq1i C x = x 0 π sin x x
50 42 7 sstri 0 π
51 50 sseli x 0 π x
52 51 sincld x 0 π sin x
53 eqid x 0 π sin x = x 0 π sin x
54 53 fvmpt2 x 0 π sin x x 0 π sin x x = sin x
55 52 54 mpdan x 0 π x 0 π sin x x = sin x
56 49 55 syl5eq x 0 π C x = sin x
57 56 adantl x 0 π C x = sin x
58 57 itgeq2dv 0 π C x dx = 0 π sin x dx
59 58 mptru 0 π C x dx = 0 π sin x dx
60 9 a1i 0
61 10 a1i π
62 pipos 0 < π
63 9 10 62 ltleii 0 π
64 63 a1i 0 π
65 nfcv _ x sin
66 sincn sin : cn
67 66 a1i sin : cn
68 50 a1i 0 π
69 65 67 68 cncfmptss x 0 π sin x : 0 π cn
70 48 69 eqeltrid C : 0 π cn
71 ioossicc 0 π 0 π
72 71 a1i 0 π 0 π
73 ioombl 0 π dom vol
74 73 a1i 0 π dom vol
75 15 sincld x 0 π sin x
76 75 adantl x 0 π sin x
77 14 a1i 0 π
78 65 67 77 cncfmptss x 0 π sin x : 0 π cn
79 78 mptru x 0 π sin x : 0 π cn
80 cniccibl 0 π x 0 π sin x : 0 π cn x 0 π sin x 𝐿 1
81 9 10 79 80 mp3an x 0 π sin x 𝐿 1
82 81 a1i x 0 π sin x 𝐿 1
83 72 74 76 82 iblss x 0 π sin x 𝐿 1
84 48 83 eqeltrid D C 𝐿 1
85 16 negcld x 0 π cos x
86 eqid x cos x = x cos x
87 86 fvmpt2 x cos x x cos x x = cos x
88 15 85 87 syl2anc x 0 π x cos x x = cos x
89 88 eqcomd x 0 π cos x = x cos x x
90 89 mpteq2ia x 0 π cos x = x 0 π x cos x x
91 nfmpt1 _ x x cos x
92 coscn cos : cn
93 86 negfcncf cos : cn x cos x : cn
94 92 93 ax-mp x cos x : cn
95 94 a1i x cos x : cn
96 91 95 77 cncfmptss x 0 π x cos x x : 0 π cn
97 96 mptru x 0 π x cos x x : 0 π cn
98 90 97 eqeltri x 0 π cos x : 0 π cn
99 5 98 eqeltri C : 0 π cn
100 99 a1i C : 0 π cn
101 60 61 64 70 84 100 ftc2 0 π C x dx = C π C 0
102 101 mptru 0 π C x dx = C π C 0
103 59 102 eqtr3i 0 π sin x dx = C π C 0
104 0xr 0 *
105 10 rexri π *
106 ubicc2 0 * π * 0 π π 0 π
107 104 105 63 106 mp3an π 0 π
108 fveq2 t = π cos t = cos π
109 cospi cos π = 1
110 108 109 eqtrdi t = π cos t = 1
111 110 negeqd t = π cos t = -1
112 ax-1cn 1
113 112 a1i t = π 1
114 113 negnegd t = π -1 = 1
115 111 114 eqtrd t = π cos t = 1
116 1ex 1 V
117 115 1 116 fvmpt π 0 π C π = 1
118 107 117 ax-mp C π = 1
119 lbicc2 0 * π * 0 π 0 0 π
120 104 105 63 119 mp3an 0 0 π
121 fveq2 t = 0 cos t = cos 0
122 121 negeqd t = 0 cos t = cos 0
123 negex cos 0 V
124 122 1 123 fvmpt 0 0 π C 0 = cos 0
125 120 124 ax-mp C 0 = cos 0
126 cos0 cos 0 = 1
127 126 negeqi cos 0 = 1
128 125 127 eqtri C 0 = 1
129 118 128 oveq12i C π C 0 = 1 -1
130 112 112 subnegi 1 -1 = 1 + 1
131 1p1e2 1 + 1 = 2
132 130 131 eqtri 1 -1 = 2
133 103 129 132 3eqtri 0 π sin x dx = 2