Metamath Proof Explorer


Theorem itschlc0xyqsol1

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q=A2+B2
itsclc0yqsol.d D=R2QC2
Assertion itschlc0xyqsol1 ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=CBX=DBX=DB

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q=A2+B2
2 itsclc0yqsol.d D=R2QC2
3 animorr A=0B0A0B0
4 3 anim2i ABCA=0B0ABCA0B0
5 1 2 itsclc0yqsol ABCA0B0R+0DXYX2+Y2=R2AX+BY=CY=BCADQY=BC+ADQ
6 4 5 syl3an1 ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=BCADQY=BC+ADQ
7 6 imp ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=BCADQY=BC+ADQ
8 oveq1 A=0AD=0D
9 8 adantr A=0B0AD=0D
10 9 adantl ABCA=0B0AD=0D
11 10 adantr ABCA=0B0R+0DAD=0D
12 rpcn R+R
13 12 adantr R+0DR
14 13 adantl ABCA=0B0R+0DR
15 14 sqcld ABCA=0B0R+0DR2
16 1 resum2sqcl ABQ
17 16 recnd ABQ
18 17 3adant3 ABCQ
19 18 adantr ABCA=0B0Q
20 19 adantr ABCA=0B0R+0DQ
21 15 20 mulcld ABCA=0B0R+0DR2Q
22 simpll3 ABCA=0B0R+0DC
23 22 recnd ABCA=0B0R+0DC
24 23 sqcld ABCA=0B0R+0DC2
25 21 24 subcld ABCA=0B0R+0DR2QC2
26 2 25 eqeltrid ABCA=0B0R+0DD
27 26 sqrtcld ABCA=0B0R+0DD
28 27 mul02d ABCA=0B0R+0D0D=0
29 11 28 eqtrd ABCA=0B0R+0DAD=0
30 29 oveq2d ABCA=0B0R+0DBCAD=BC0
31 simpll2 ABCA=0B0R+0DB
32 31 recnd ABCA=0B0R+0DB
33 32 23 mulcld ABCA=0B0R+0DBC
34 33 subid1d ABCA=0B0R+0DBC0=BC
35 30 34 eqtrd ABCA=0B0R+0DBCAD=BC
36 sq0i A=0A2=0
37 36 adantr A=0B0A2=0
38 37 adantl ABCA=0B0A2=0
39 38 adantr ABCA=0B0R+0DA2=0
40 39 oveq1d ABCA=0B0R+0DA2+B2=0+B2
41 32 sqcld ABCA=0B0R+0DB2
42 41 addlidd ABCA=0B0R+0D0+B2=B2
43 40 42 eqtrd ABCA=0B0R+0DA2+B2=B2
44 1 43 eqtrid ABCA=0B0R+0DQ=B2
45 recn BB
46 45 sqvald BB2=BB
47 46 3ad2ant2 ABCB2=BB
48 47 adantr ABCA=0B0B2=BB
49 48 adantr ABCA=0B0R+0DB2=BB
50 44 49 eqtrd ABCA=0B0R+0DQ=BB
51 35 50 oveq12d ABCA=0B0R+0DBCADQ=BCBB
52 simplrr ABCA=0B0R+0DB0
53 23 32 32 52 52 divcan5d ABCA=0B0R+0DBCBB=CB
54 51 53 eqtrd ABCA=0B0R+0DBCADQ=CB
55 54 eqeq2d ABCA=0B0R+0DY=BCADQY=CB
56 55 biimpd ABCA=0B0R+0DY=BCADQY=CB
57 29 oveq2d ABCA=0B0R+0DBC+AD=BC+0
58 33 addridd ABCA=0B0R+0DBC+0=BC
59 57 58 eqtrd ABCA=0B0R+0DBC+AD=BC
60 59 44 oveq12d ABCA=0B0R+0DBC+ADQ=BCB2
61 simp2 ABCB
62 61 recnd ABCB
63 62 sqvald ABCB2=BB
64 63 adantr ABCA=0B0B2=BB
65 64 oveq2d ABCA=0B0BCB2=BCBB
66 simpl3 ABCA=0B0C
67 66 recnd ABCA=0B0C
68 62 adantr ABCA=0B0B
69 simpr A=0B0B0
70 69 adantl ABCA=0B0B0
71 67 68 68 70 70 divcan5d ABCA=0B0BCBB=CB
72 65 71 eqtrd ABCA=0B0BCB2=CB
73 72 adantr ABCA=0B0R+0DBCB2=CB
74 60 73 eqtrd ABCA=0B0R+0DBC+ADQ=CB
75 74 eqeq2d ABCA=0B0R+0DY=BC+ADQY=CB
76 75 biimpd ABCA=0B0R+0DY=BC+ADQY=CB
77 56 76 jaod ABCA=0B0R+0DY=BCADQY=BC+ADQY=CB
78 77 3adant3 ABCA=0B0R+0DXYY=BCADQY=BC+ADQY=CB
79 78 adantr ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=BCADQY=BC+ADQY=CB
80 oveq1 Y=CBY2=CB2
81 80 oveq2d Y=CBX2+Y2=X2+CB2
82 81 eqeq1d Y=CBX2+Y2=R2X2+CB2=R2
83 15 3adant3 ABCA=0B0R+0DXYR2
84 23 3adant3 ABCA=0B0R+0DXYC
85 32 3adant3 ABCA=0B0R+0DXYB
86 simp1rr ABCA=0B0R+0DXYB0
87 84 85 86 divcld ABCA=0B0R+0DXYCB
88 87 sqcld ABCA=0B0R+0DXYCB2
89 simp3l ABCA=0B0R+0DXYX
90 89 recnd ABCA=0B0R+0DXYX
91 90 sqcld ABCA=0B0R+0DXYX2
92 83 88 91 subadd2d ABCA=0B0R+0DXYR2CB2=X2X2+CB2=R2
93 23 32 52 sqdivd ABCA=0B0R+0DCB2=C2B2
94 93 oveq2d ABCA=0B0R+0DR2CB2=R2C2B2
95 31 resqcld ABCA=0B0R+0DB2
96 31 52 sqgt0d ABCA=0B0R+0D0<B2
97 95 96 elrpd ABCA=0B0R+0DB2+
98 97 rpcnne0d ABCA=0B0R+0DB2B20
99 subdivcomb1 R2C2B2B20B2R2C2B2=R2C2B2
100 15 24 98 99 syl3anc ABCA=0B0R+0DB2R2C2B2=R2C2B2
101 94 100 eqtr4d ABCA=0B0R+0DR2CB2=B2R2C2B2
102 101 eqeq1d ABCA=0B0R+0DR2CB2=X2B2R2C2B2=X2
103 102 3adant3 ABCA=0B0R+0DXYR2CB2=X2B2R2C2B2=X2
104 41 3adant3 ABCA=0B0R+0DXYB2
105 104 83 mulcomd ABCA=0B0R+0DXYB2R2=R2B2
106 44 3adant3 ABCA=0B0R+0DXYQ=B2
107 106 eqcomd ABCA=0B0R+0DXYB2=Q
108 107 oveq2d ABCA=0B0R+0DXYR2B2=R2Q
109 105 108 eqtrd ABCA=0B0R+0DXYB2R2=R2Q
110 109 oveq1d ABCA=0B0R+0DXYB2R2C2=R2QC2
111 110 oveq1d ABCA=0B0R+0DXYB2R2C2B2=R2QC2B2
112 111 eqeq1d ABCA=0B0R+0DXYB2R2C2B2=X2R2QC2B2=X2
113 2 oveq1i DB2=R2QC2B2
114 113 eqeq1i DB2=X2R2QC2B2=X2
115 eqcom DB2=X2X2=DB2
116 26 3adant3 ABCA=0B0R+0DXYD
117 sqrtth DD2=D
118 117 eqcomd DD=D2
119 116 118 syl ABCA=0B0R+0DXYD=D2
120 119 oveq1d ABCA=0B0R+0DXYDB2=D2B2
121 27 3adant3 ABCA=0B0R+0DXYD
122 121 85 86 sqdivd ABCA=0B0R+0DXYDB2=D2B2
123 120 122 eqtr4d ABCA=0B0R+0DXYDB2=DB2
124 123 eqeq2d ABCA=0B0R+0DXYX2=DB2X2=DB2
125 121 85 86 divcld ABCA=0B0R+0DXYDB
126 90 125 jca ABCA=0B0R+0DXYXDB
127 sqeqor XDBX2=DB2X=DBX=DB
128 126 127 syl ABCA=0B0R+0DXYX2=DB2X=DBX=DB
129 orcom X=DBX=DBX=DBX=DB
130 129 a1i ABCA=0B0R+0DXYX=DBX=DBX=DBX=DB
131 124 128 130 3bitrd ABCA=0B0R+0DXYX2=DB2X=DBX=DB
132 131 biimpd ABCA=0B0R+0DXYX2=DB2X=DBX=DB
133 115 132 biimtrid ABCA=0B0R+0DXYDB2=X2X=DBX=DB
134 114 133 biimtrrid ABCA=0B0R+0DXYR2QC2B2=X2X=DBX=DB
135 112 134 sylbid ABCA=0B0R+0DXYB2R2C2B2=X2X=DBX=DB
136 103 135 sylbid ABCA=0B0R+0DXYR2CB2=X2X=DBX=DB
137 92 136 sylbird ABCA=0B0R+0DXYX2+CB2=R2X=DBX=DB
138 137 com12 X2+CB2=R2ABCA=0B0R+0DXYX=DBX=DB
139 82 138 syl6bi Y=CBX2+Y2=R2ABCA=0B0R+0DXYX=DBX=DB
140 139 com13 ABCA=0B0R+0DXYX2+Y2=R2Y=CBX=DBX=DB
141 140 adantrd ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=CBX=DBX=DB
142 141 imp ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=CBX=DBX=DB
143 142 ancld ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=CBY=CBX=DBX=DB
144 79 143 syld ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=BCADQY=BC+ADQY=CBX=DBX=DB
145 7 144 mpd ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=CBX=DBX=DB
146 145 ex ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=CBX=DBX=DB