Metamath Proof Explorer


Theorem itschlc0xyqsol1

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q = A 2 + B 2
itsclc0yqsol.d D = R 2 Q C 2
Assertion itschlc0xyqsol1 A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = C B X = D B X = D B

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q = A 2 + B 2
2 itsclc0yqsol.d D = R 2 Q C 2
3 animorr A = 0 B 0 A 0 B 0
4 3 anim2i A B C A = 0 B 0 A B C A 0 B 0
5 1 2 itsclc0yqsol A B C A 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q
6 4 5 syl3an1 A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q
7 6 imp A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q
8 oveq1 A = 0 A D = 0 D
9 8 adantr A = 0 B 0 A D = 0 D
10 9 adantl A B C A = 0 B 0 A D = 0 D
11 10 adantr A B C A = 0 B 0 R + 0 D A D = 0 D
12 rpcn R + R
13 12 adantr R + 0 D R
14 13 adantl A B C A = 0 B 0 R + 0 D R
15 14 sqcld A B C A = 0 B 0 R + 0 D R 2
16 1 resum2sqcl A B Q
17 16 recnd A B Q
18 17 3adant3 A B C Q
19 18 adantr A B C A = 0 B 0 Q
20 19 adantr A B C A = 0 B 0 R + 0 D Q
21 15 20 mulcld A B C A = 0 B 0 R + 0 D R 2 Q
22 simpll3 A B C A = 0 B 0 R + 0 D C
23 22 recnd A B C A = 0 B 0 R + 0 D C
24 23 sqcld A B C A = 0 B 0 R + 0 D C 2
25 21 24 subcld A B C A = 0 B 0 R + 0 D R 2 Q C 2
26 2 25 eqeltrid A B C A = 0 B 0 R + 0 D D
27 26 sqrtcld A B C A = 0 B 0 R + 0 D D
28 27 mul02d A B C A = 0 B 0 R + 0 D 0 D = 0
29 11 28 eqtrd A B C A = 0 B 0 R + 0 D A D = 0
30 29 oveq2d A B C A = 0 B 0 R + 0 D B C A D = B C 0
31 simpll2 A B C A = 0 B 0 R + 0 D B
32 31 recnd A B C A = 0 B 0 R + 0 D B
33 32 23 mulcld A B C A = 0 B 0 R + 0 D B C
34 33 subid1d A B C A = 0 B 0 R + 0 D B C 0 = B C
35 30 34 eqtrd A B C A = 0 B 0 R + 0 D B C A D = B C
36 sq0i A = 0 A 2 = 0
37 36 adantr A = 0 B 0 A 2 = 0
38 37 adantl A B C A = 0 B 0 A 2 = 0
39 38 adantr A B C A = 0 B 0 R + 0 D A 2 = 0
40 39 oveq1d A B C A = 0 B 0 R + 0 D A 2 + B 2 = 0 + B 2
41 32 sqcld A B C A = 0 B 0 R + 0 D B 2
42 41 addid2d A B C A = 0 B 0 R + 0 D 0 + B 2 = B 2
43 40 42 eqtrd A B C A = 0 B 0 R + 0 D A 2 + B 2 = B 2
44 1 43 syl5eq A B C A = 0 B 0 R + 0 D Q = B 2
45 recn B B
46 45 sqvald B B 2 = B B
47 46 3ad2ant2 A B C B 2 = B B
48 47 adantr A B C A = 0 B 0 B 2 = B B
49 48 adantr A B C A = 0 B 0 R + 0 D B 2 = B B
50 44 49 eqtrd A B C A = 0 B 0 R + 0 D Q = B B
51 35 50 oveq12d A B C A = 0 B 0 R + 0 D B C A D Q = B C B B
52 simplrr A B C A = 0 B 0 R + 0 D B 0
53 23 32 32 52 52 divcan5d A B C A = 0 B 0 R + 0 D B C B B = C B
54 51 53 eqtrd A B C A = 0 B 0 R + 0 D B C A D Q = C B
55 54 eqeq2d A B C A = 0 B 0 R + 0 D Y = B C A D Q Y = C B
56 55 biimpd A B C A = 0 B 0 R + 0 D Y = B C A D Q Y = C B
57 29 oveq2d A B C A = 0 B 0 R + 0 D B C + A D = B C + 0
58 33 addid1d A B C A = 0 B 0 R + 0 D B C + 0 = B C
59 57 58 eqtrd A B C A = 0 B 0 R + 0 D B C + A D = B C
60 59 44 oveq12d A B C A = 0 B 0 R + 0 D B C + A D Q = B C B 2
61 simp2 A B C B
62 61 recnd A B C B
63 62 sqvald A B C B 2 = B B
64 63 adantr A B C A = 0 B 0 B 2 = B B
65 64 oveq2d A B C A = 0 B 0 B C B 2 = B C B B
66 simpl3 A B C A = 0 B 0 C
67 66 recnd A B C A = 0 B 0 C
68 62 adantr A B C A = 0 B 0 B
69 simpr A = 0 B 0 B 0
70 69 adantl A B C A = 0 B 0 B 0
71 67 68 68 70 70 divcan5d A B C A = 0 B 0 B C B B = C B
72 65 71 eqtrd A B C A = 0 B 0 B C B 2 = C B
73 72 adantr A B C A = 0 B 0 R + 0 D B C B 2 = C B
74 60 73 eqtrd A B C A = 0 B 0 R + 0 D B C + A D Q = C B
75 74 eqeq2d A B C A = 0 B 0 R + 0 D Y = B C + A D Q Y = C B
76 75 biimpd A B C A = 0 B 0 R + 0 D Y = B C + A D Q Y = C B
77 56 76 jaod A B C A = 0 B 0 R + 0 D Y = B C A D Q Y = B C + A D Q Y = C B
78 77 3adant3 A B C A = 0 B 0 R + 0 D X Y Y = B C A D Q Y = B C + A D Q Y = C B
79 78 adantr A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q Y = C B
80 oveq1 Y = C B Y 2 = C B 2
81 80 oveq2d Y = C B X 2 + Y 2 = X 2 + C B 2
82 81 eqeq1d Y = C B X 2 + Y 2 = R 2 X 2 + C B 2 = R 2
83 15 3adant3 A B C A = 0 B 0 R + 0 D X Y R 2
84 23 3adant3 A B C A = 0 B 0 R + 0 D X Y C
85 32 3adant3 A B C A = 0 B 0 R + 0 D X Y B
86 simp1rr A B C A = 0 B 0 R + 0 D X Y B 0
87 84 85 86 divcld A B C A = 0 B 0 R + 0 D X Y C B
88 87 sqcld A B C A = 0 B 0 R + 0 D X Y C B 2
89 simp3l A B C A = 0 B 0 R + 0 D X Y X
90 89 recnd A B C A = 0 B 0 R + 0 D X Y X
91 90 sqcld A B C A = 0 B 0 R + 0 D X Y X 2
92 83 88 91 subadd2d A B C A = 0 B 0 R + 0 D X Y R 2 C B 2 = X 2 X 2 + C B 2 = R 2
93 23 32 52 sqdivd A B C A = 0 B 0 R + 0 D C B 2 = C 2 B 2
94 93 oveq2d A B C A = 0 B 0 R + 0 D R 2 C B 2 = R 2 C 2 B 2
95 31 resqcld A B C A = 0 B 0 R + 0 D B 2
96 31 52 sqgt0d A B C A = 0 B 0 R + 0 D 0 < B 2
97 95 96 elrpd A B C A = 0 B 0 R + 0 D B 2 +
98 97 rpcnne0d A B C A = 0 B 0 R + 0 D B 2 B 2 0
99 subdivcomb1 R 2 C 2 B 2 B 2 0 B 2 R 2 C 2 B 2 = R 2 C 2 B 2
100 15 24 98 99 syl3anc A B C A = 0 B 0 R + 0 D B 2 R 2 C 2 B 2 = R 2 C 2 B 2
101 94 100 eqtr4d A B C A = 0 B 0 R + 0 D R 2 C B 2 = B 2 R 2 C 2 B 2
102 101 eqeq1d A B C A = 0 B 0 R + 0 D R 2 C B 2 = X 2 B 2 R 2 C 2 B 2 = X 2
103 102 3adant3 A B C A = 0 B 0 R + 0 D X Y R 2 C B 2 = X 2 B 2 R 2 C 2 B 2 = X 2
104 41 3adant3 A B C A = 0 B 0 R + 0 D X Y B 2
105 104 83 mulcomd A B C A = 0 B 0 R + 0 D X Y B 2 R 2 = R 2 B 2
106 44 3adant3 A B C A = 0 B 0 R + 0 D X Y Q = B 2
107 106 eqcomd A B C A = 0 B 0 R + 0 D X Y B 2 = Q
108 107 oveq2d A B C A = 0 B 0 R + 0 D X Y R 2 B 2 = R 2 Q
109 105 108 eqtrd A B C A = 0 B 0 R + 0 D X Y B 2 R 2 = R 2 Q
110 109 oveq1d A B C A = 0 B 0 R + 0 D X Y B 2 R 2 C 2 = R 2 Q C 2
111 110 oveq1d A B C A = 0 B 0 R + 0 D X Y B 2 R 2 C 2 B 2 = R 2 Q C 2 B 2
112 111 eqeq1d A B C A = 0 B 0 R + 0 D X Y B 2 R 2 C 2 B 2 = X 2 R 2 Q C 2 B 2 = X 2
113 2 oveq1i D B 2 = R 2 Q C 2 B 2
114 113 eqeq1i D B 2 = X 2 R 2 Q C 2 B 2 = X 2
115 eqcom D B 2 = X 2 X 2 = D B 2
116 26 3adant3 A B C A = 0 B 0 R + 0 D X Y D
117 sqrtth D D 2 = D
118 117 eqcomd D D = D 2
119 116 118 syl A B C A = 0 B 0 R + 0 D X Y D = D 2
120 119 oveq1d A B C A = 0 B 0 R + 0 D X Y D B 2 = D 2 B 2
121 27 3adant3 A B C A = 0 B 0 R + 0 D X Y D
122 121 85 86 sqdivd A B C A = 0 B 0 R + 0 D X Y D B 2 = D 2 B 2
123 120 122 eqtr4d A B C A = 0 B 0 R + 0 D X Y D B 2 = D B 2
124 123 eqeq2d A B C A = 0 B 0 R + 0 D X Y X 2 = D B 2 X 2 = D B 2
125 121 85 86 divcld A B C A = 0 B 0 R + 0 D X Y D B
126 90 125 jca A B C A = 0 B 0 R + 0 D X Y X D B
127 sqeqor X D B X 2 = D B 2 X = D B X = D B
128 126 127 syl A B C A = 0 B 0 R + 0 D X Y X 2 = D B 2 X = D B X = D B
129 orcom X = D B X = D B X = D B X = D B
130 129 a1i A B C A = 0 B 0 R + 0 D X Y X = D B X = D B X = D B X = D B
131 124 128 130 3bitrd A B C A = 0 B 0 R + 0 D X Y X 2 = D B 2 X = D B X = D B
132 131 biimpd A B C A = 0 B 0 R + 0 D X Y X 2 = D B 2 X = D B X = D B
133 115 132 syl5bi A B C A = 0 B 0 R + 0 D X Y D B 2 = X 2 X = D B X = D B
134 114 133 syl5bir A B C A = 0 B 0 R + 0 D X Y R 2 Q C 2 B 2 = X 2 X = D B X = D B
135 112 134 sylbid A B C A = 0 B 0 R + 0 D X Y B 2 R 2 C 2 B 2 = X 2 X = D B X = D B
136 103 135 sylbid A B C A = 0 B 0 R + 0 D X Y R 2 C B 2 = X 2 X = D B X = D B
137 92 136 sylbird A B C A = 0 B 0 R + 0 D X Y X 2 + C B 2 = R 2 X = D B X = D B
138 137 com12 X 2 + C B 2 = R 2 A B C A = 0 B 0 R + 0 D X Y X = D B X = D B
139 82 138 syl6bi Y = C B X 2 + Y 2 = R 2 A B C A = 0 B 0 R + 0 D X Y X = D B X = D B
140 139 com13 A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 Y = C B X = D B X = D B
141 140 adantrd A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = C B X = D B X = D B
142 141 imp A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = C B X = D B X = D B
143 142 ancld A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = C B Y = C B X = D B X = D B
144 79 143 syld A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q Y = C B X = D B X = D B
145 7 144 mpd A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = C B X = D B X = D B
146 145 ex A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = C B X = D B X = D B