| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq1 |
|
| 3 |
2
|
oveq2d |
|
| 4 |
1 3
|
breq12d |
|
| 5 |
4
|
imbi2d |
|
| 6 |
|
oveq2 |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
oveq2d |
|
| 9 |
6 8
|
breq12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
oveq2 |
|
| 12 |
|
oveq1 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
11 13
|
breq12d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
oveq2 |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
16 18
|
breq12d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
1le1 |
|
| 22 |
21
|
a1i |
|
| 23 |
|
2cn |
|
| 24 |
|
eluzelcn |
|
| 25 |
|
mulcl |
|
| 26 |
23 24 25
|
sylancr |
|
| 27 |
|
ax-1cn |
|
| 28 |
|
subcl |
|
| 29 |
26 27 28
|
sylancl |
|
| 30 |
29
|
exp0d |
|
| 31 |
|
0p1e1 |
|
| 32 |
31
|
oveq2i |
|
| 33 |
|
rmy1 |
|
| 34 |
32 33
|
eqtrid |
|
| 35 |
22 30 34
|
3brtr4d |
|
| 36 |
|
2re |
|
| 37 |
|
eluzelre |
|
| 38 |
37
|
adantl |
|
| 39 |
|
remulcl |
|
| 40 |
36 38 39
|
sylancr |
|
| 41 |
|
1re |
|
| 42 |
|
resubcl |
|
| 43 |
40 41 42
|
sylancl |
|
| 44 |
|
peano2nn0 |
|
| 45 |
44
|
adantr |
|
| 46 |
43 45
|
reexpcld |
|
| 47 |
46
|
3adant3 |
|
| 48 |
|
simpr |
|
| 49 |
|
nn0z |
|
| 50 |
49
|
adantr |
|
| 51 |
50
|
peano2zd |
|
| 52 |
|
frmy |
|
| 53 |
52
|
fovcl |
|
| 54 |
53
|
zred |
|
| 55 |
48 51 54
|
syl2anc |
|
| 56 |
55 43
|
remulcld |
|
| 57 |
56
|
3adant3 |
|
| 58 |
51
|
peano2zd |
|
| 59 |
52
|
fovcl |
|
| 60 |
59
|
zred |
|
| 61 |
48 58 60
|
syl2anc |
|
| 62 |
61
|
3adant3 |
|
| 63 |
29
|
3ad2ant2 |
|
| 64 |
|
simp1 |
|
| 65 |
63 64
|
expp1d |
|
| 66 |
|
simpl |
|
| 67 |
43 66
|
reexpcld |
|
| 68 |
|
2nn |
|
| 69 |
|
eluz2nn |
|
| 70 |
69
|
adantl |
|
| 71 |
|
nnmulcl |
|
| 72 |
68 70 71
|
sylancr |
|
| 73 |
|
nnm1nn0 |
|
| 74 |
|
nn0ge0 |
|
| 75 |
72 73 74
|
3syl |
|
| 76 |
43 75
|
jca |
|
| 77 |
67 55 76
|
3jca |
|
| 78 |
|
lemul1a |
|
| 79 |
77 78
|
stoic3 |
|
| 80 |
65 79
|
eqbrtrd |
|
| 81 |
|
nn0cn |
|
| 82 |
81
|
adantr |
|
| 83 |
|
pncan |
|
| 84 |
82 27 83
|
sylancl |
|
| 85 |
84
|
oveq2d |
|
| 86 |
52
|
fovcl |
|
| 87 |
86
|
zred |
|
| 88 |
48 50 87
|
syl2anc |
|
| 89 |
85 88
|
eqeltrd |
|
| 90 |
|
remulcl |
|
| 91 |
55 41 90
|
sylancl |
|
| 92 |
40 55
|
remulcld |
|
| 93 |
|
nn0re |
|
| 94 |
93
|
adantr |
|
| 95 |
94
|
lep1d |
|
| 96 |
|
lermy |
|
| 97 |
48 50 51 96
|
syl3anc |
|
| 98 |
95 97
|
mpbid |
|
| 99 |
55
|
recnd |
|
| 100 |
99
|
mulridd |
|
| 101 |
98 85 100
|
3brtr4d |
|
| 102 |
89 91 92 101
|
lesub2dd |
|
| 103 |
40
|
recnd |
|
| 104 |
27
|
a1i |
|
| 105 |
99 103 104
|
subdid |
|
| 106 |
99 103
|
mulcomd |
|
| 107 |
106
|
oveq1d |
|
| 108 |
105 107
|
eqtrd |
|
| 109 |
|
rmyluc2 |
|
| 110 |
48 51 109
|
syl2anc |
|
| 111 |
102 108 110
|
3brtr4d |
|
| 112 |
111
|
3adant3 |
|
| 113 |
47 57 62 80 112
|
letrd |
|
| 114 |
113
|
3exp |
|
| 115 |
114
|
a2d |
|
| 116 |
5 10 15 20 35 115
|
nn0ind |
|
| 117 |
116
|
impcom |
|