Metamath Proof Explorer


Theorem jm2.17a

Description: First half of lemma 2.17 of JonesMatijasevic p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014)

Ref Expression
Assertion jm2.17a A2N02A1NAYrmN+1

Proof

Step Hyp Ref Expression
1 oveq2 a=02A1a=2A10
2 oveq1 a=0a+1=0+1
3 2 oveq2d a=0AYrma+1=AYrm0+1
4 1 3 breq12d a=02A1aAYrma+12A10AYrm0+1
5 4 imbi2d a=0A22A1aAYrma+1A22A10AYrm0+1
6 oveq2 a=b2A1a=2A1b
7 oveq1 a=ba+1=b+1
8 7 oveq2d a=bAYrma+1=AYrmb+1
9 6 8 breq12d a=b2A1aAYrma+12A1bAYrmb+1
10 9 imbi2d a=bA22A1aAYrma+1A22A1bAYrmb+1
11 oveq2 a=b+12A1a=2A1b+1
12 oveq1 a=b+1a+1=b+1+1
13 12 oveq2d a=b+1AYrma+1=AYrmb+1+1
14 11 13 breq12d a=b+12A1aAYrma+12A1b+1AYrmb+1+1
15 14 imbi2d a=b+1A22A1aAYrma+1A22A1b+1AYrmb+1+1
16 oveq2 a=N2A1a=2A1N
17 oveq1 a=Na+1=N+1
18 17 oveq2d a=NAYrma+1=AYrmN+1
19 16 18 breq12d a=N2A1aAYrma+12A1NAYrmN+1
20 19 imbi2d a=NA22A1aAYrma+1A22A1NAYrmN+1
21 1le1 11
22 21 a1i A211
23 2cn 2
24 eluzelcn A2A
25 mulcl 2A2A
26 23 24 25 sylancr A22A
27 ax-1cn 1
28 subcl 2A12A1
29 26 27 28 sylancl A22A1
30 29 exp0d A22A10=1
31 0p1e1 0+1=1
32 31 oveq2i AYrm0+1=AYrm1
33 rmy1 A2AYrm1=1
34 32 33 eqtrid A2AYrm0+1=1
35 22 30 34 3brtr4d A22A10AYrm0+1
36 2re 2
37 eluzelre A2A
38 37 adantl b0A2A
39 remulcl 2A2A
40 36 38 39 sylancr b0A22A
41 1re 1
42 resubcl 2A12A1
43 40 41 42 sylancl b0A22A1
44 peano2nn0 b0b+10
45 44 adantr b0A2b+10
46 43 45 reexpcld b0A22A1b+1
47 46 3adant3 b0A22A1bAYrmb+12A1b+1
48 simpr b0A2A2
49 nn0z b0b
50 49 adantr b0A2b
51 50 peano2zd b0A2b+1
52 frmy Yrm:2×
53 52 fovcl A2b+1AYrmb+1
54 53 zred A2b+1AYrmb+1
55 48 51 54 syl2anc b0A2AYrmb+1
56 55 43 remulcld b0A2AYrmb+12A1
57 56 3adant3 b0A22A1bAYrmb+1AYrmb+12A1
58 51 peano2zd b0A2b+1+1
59 52 fovcl A2b+1+1AYrmb+1+1
60 59 zred A2b+1+1AYrmb+1+1
61 48 58 60 syl2anc b0A2AYrmb+1+1
62 61 3adant3 b0A22A1bAYrmb+1AYrmb+1+1
63 29 3ad2ant2 b0A22A1bAYrmb+12A1
64 simp1 b0A22A1bAYrmb+1b0
65 63 64 expp1d b0A22A1bAYrmb+12A1b+1=2A1b2A1
66 simpl b0A2b0
67 43 66 reexpcld b0A22A1b
68 2nn 2
69 eluz2nn A2A
70 69 adantl b0A2A
71 nnmulcl 2A2A
72 68 70 71 sylancr b0A22A
73 nnm1nn0 2A2A10
74 nn0ge0 2A1002A1
75 72 73 74 3syl b0A202A1
76 43 75 jca b0A22A102A1
77 67 55 76 3jca b0A22A1bAYrmb+12A102A1
78 lemul1a 2A1bAYrmb+12A102A12A1bAYrmb+12A1b2A1AYrmb+12A1
79 77 78 stoic3 b0A22A1bAYrmb+12A1b2A1AYrmb+12A1
80 65 79 eqbrtrd b0A22A1bAYrmb+12A1b+1AYrmb+12A1
81 nn0cn b0b
82 81 adantr b0A2b
83 pncan b1b+1-1=b
84 82 27 83 sylancl b0A2b+1-1=b
85 84 oveq2d b0A2AYrmb+1-1=AYrmb
86 52 fovcl A2bAYrmb
87 86 zred A2bAYrmb
88 48 50 87 syl2anc b0A2AYrmb
89 85 88 eqeltrd b0A2AYrmb+1-1
90 remulcl AYrmb+11AYrmb+11
91 55 41 90 sylancl b0A2AYrmb+11
92 40 55 remulcld b0A22AAYrmb+1
93 nn0re b0b
94 93 adantr b0A2b
95 94 lep1d b0A2bb+1
96 lermy A2bb+1bb+1AYrmbAYrmb+1
97 48 50 51 96 syl3anc b0A2bb+1AYrmbAYrmb+1
98 95 97 mpbid b0A2AYrmbAYrmb+1
99 55 recnd b0A2AYrmb+1
100 99 mulridd b0A2AYrmb+11=AYrmb+1
101 98 85 100 3brtr4d b0A2AYrmb+1-1AYrmb+11
102 89 91 92 101 lesub2dd b0A22AAYrmb+1AYrmb+112AAYrmb+1AYrmb+1-1
103 40 recnd b0A22A
104 27 a1i b0A21
105 99 103 104 subdid b0A2AYrmb+12A1=AYrmb+12AAYrmb+11
106 99 103 mulcomd b0A2AYrmb+12A=2AAYrmb+1
107 106 oveq1d b0A2AYrmb+12AAYrmb+11=2AAYrmb+1AYrmb+11
108 105 107 eqtrd b0A2AYrmb+12A1=2AAYrmb+1AYrmb+11
109 rmyluc2 A2b+1AYrmb+1+1=2AAYrmb+1AYrmb+1-1
110 48 51 109 syl2anc b0A2AYrmb+1+1=2AAYrmb+1AYrmb+1-1
111 102 108 110 3brtr4d b0A2AYrmb+12A1AYrmb+1+1
112 111 3adant3 b0A22A1bAYrmb+1AYrmb+12A1AYrmb+1+1
113 47 57 62 80 112 letrd b0A22A1bAYrmb+12A1b+1AYrmb+1+1
114 113 3exp b0A22A1bAYrmb+12A1b+1AYrmb+1+1
115 114 a2d b0A22A1bAYrmb+1A22A1b+1AYrmb+1+1
116 5 10 15 20 35 115 nn0ind N0A22A1NAYrmN+1
117 116 impcom A2N02A1NAYrmN+1