Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ideals
keridl
Next ⟩
pridlval
Metamath Proof Explorer
Ascii
Unicode
Theorem
keridl
Description:
The kernel of a ring homomorphism is an ideal.
(Contributed by
Jeff Madsen
, 3-Jan-2011)
Ref
Expression
Hypotheses
keridl.1
⊢
G
=
1
st
S
keridl.2
⊢
Z
=
GId
G
Assertion
keridl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
-1
Z
∈
Idl
R
Proof
Step
Hyp
Ref
Expression
1
keridl.1
⊢
G
=
1
st
S
2
keridl.2
⊢
Z
=
GId
G
3
cnvimass
⊢
F
-1
Z
⊆
dom
F
4
eqid
⊢
1
st
R
=
1
st
R
5
eqid
⊢
ran
1
st
R
=
ran
1
st
R
6
eqid
⊢
ran
G
=
ran
G
7
4
5
1
6
rngohomf
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
:
ran
1
st
R
⟶
ran
G
8
3
7
fssdm
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
-1
Z
⊆
ran
1
st
R
9
eqid
⊢
GId
1
st
R
=
GId
1
st
R
10
4
5
9
rngo0cl
⊢
R
∈
RingOps
→
GId
1
st
R
∈
ran
1
st
R
11
10
3ad2ant1
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
GId
1
st
R
∈
ran
1
st
R
12
4
9
1
2
rngohom0
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
GId
1
st
R
=
Z
13
fvex
⊢
F
GId
1
st
R
∈
V
14
13
elsn
⊢
F
GId
1
st
R
∈
Z
↔
F
GId
1
st
R
=
Z
15
12
14
sylibr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
GId
1
st
R
∈
Z
16
ffn
⊢
F
:
ran
1
st
R
⟶
ran
G
→
F
Fn
ran
1
st
R
17
elpreima
⊢
F
Fn
ran
1
st
R
→
GId
1
st
R
∈
F
-1
Z
↔
GId
1
st
R
∈
ran
1
st
R
∧
F
GId
1
st
R
∈
Z
18
7
16
17
3syl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
GId
1
st
R
∈
F
-1
Z
↔
GId
1
st
R
∈
ran
1
st
R
∧
F
GId
1
st
R
∈
Z
19
11
15
18
mpbir2and
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
GId
1
st
R
∈
F
-1
Z
20
an4
⊢
x
∈
ran
1
st
R
∧
F
x
∈
Z
∧
y
∈
ran
1
st
R
∧
F
y
∈
Z
↔
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
∈
Z
∧
F
y
∈
Z
21
4
5
1
rngohomadd
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
→
F
x
1
st
R
y
=
F
x
G
F
y
22
21
adantr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
=
Z
∧
F
y
=
Z
→
F
x
1
st
R
y
=
F
x
G
F
y
23
oveq12
⊢
F
x
=
Z
∧
F
y
=
Z
→
F
x
G
F
y
=
Z
G
Z
24
23
adantl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
=
Z
∧
F
y
=
Z
→
F
x
G
F
y
=
Z
G
Z
25
1
rngogrpo
⊢
S
∈
RingOps
→
G
∈
GrpOp
26
6
2
grpoidcl
⊢
G
∈
GrpOp
→
Z
∈
ran
G
27
6
2
grpolid
⊢
G
∈
GrpOp
∧
Z
∈
ran
G
→
Z
G
Z
=
Z
28
25
26
27
syl2anc2
⊢
S
∈
RingOps
→
Z
G
Z
=
Z
29
28
3ad2ant2
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
Z
G
Z
=
Z
30
29
ad2antrr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
=
Z
∧
F
y
=
Z
→
Z
G
Z
=
Z
31
22
24
30
3eqtrd
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
=
Z
∧
F
y
=
Z
→
F
x
1
st
R
y
=
Z
32
31
ex
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
→
F
x
=
Z
∧
F
y
=
Z
→
F
x
1
st
R
y
=
Z
33
fvex
⊢
F
x
∈
V
34
33
elsn
⊢
F
x
∈
Z
↔
F
x
=
Z
35
fvex
⊢
F
y
∈
V
36
35
elsn
⊢
F
y
∈
Z
↔
F
y
=
Z
37
34
36
anbi12i
⊢
F
x
∈
Z
∧
F
y
∈
Z
↔
F
x
=
Z
∧
F
y
=
Z
38
fvex
⊢
F
x
1
st
R
y
∈
V
39
38
elsn
⊢
F
x
1
st
R
y
∈
Z
↔
F
x
1
st
R
y
=
Z
40
32
37
39
3imtr4g
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
→
F
x
∈
Z
∧
F
y
∈
Z
→
F
x
1
st
R
y
∈
Z
41
40
imdistanda
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
∈
Z
∧
F
y
∈
Z
→
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
1
st
R
y
∈
Z
42
4
5
rngogcl
⊢
R
∈
RingOps
∧
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
→
x
1
st
R
y
∈
ran
1
st
R
43
42
3expib
⊢
R
∈
RingOps
→
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
→
x
1
st
R
y
∈
ran
1
st
R
44
43
3ad2ant1
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
→
x
1
st
R
y
∈
ran
1
st
R
45
44
anim1d
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
1
st
R
y
∈
Z
→
x
1
st
R
y
∈
ran
1
st
R
∧
F
x
1
st
R
y
∈
Z
46
41
45
syld
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
ran
1
st
R
∧
y
∈
ran
1
st
R
∧
F
x
∈
Z
∧
F
y
∈
Z
→
x
1
st
R
y
∈
ran
1
st
R
∧
F
x
1
st
R
y
∈
Z
47
20
46
biimtrid
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
ran
1
st
R
∧
F
x
∈
Z
∧
y
∈
ran
1
st
R
∧
F
y
∈
Z
→
x
1
st
R
y
∈
ran
1
st
R
∧
F
x
1
st
R
y
∈
Z
48
elpreima
⊢
F
Fn
ran
1
st
R
→
x
∈
F
-1
Z
↔
x
∈
ran
1
st
R
∧
F
x
∈
Z
49
7
16
48
3syl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
F
-1
Z
↔
x
∈
ran
1
st
R
∧
F
x
∈
Z
50
elpreima
⊢
F
Fn
ran
1
st
R
→
y
∈
F
-1
Z
↔
y
∈
ran
1
st
R
∧
F
y
∈
Z
51
7
16
50
3syl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
y
∈
F
-1
Z
↔
y
∈
ran
1
st
R
∧
F
y
∈
Z
52
49
51
anbi12d
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
F
-1
Z
∧
y
∈
F
-1
Z
↔
x
∈
ran
1
st
R
∧
F
x
∈
Z
∧
y
∈
ran
1
st
R
∧
F
y
∈
Z
53
elpreima
⊢
F
Fn
ran
1
st
R
→
x
1
st
R
y
∈
F
-1
Z
↔
x
1
st
R
y
∈
ran
1
st
R
∧
F
x
1
st
R
y
∈
Z
54
7
16
53
3syl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
1
st
R
y
∈
F
-1
Z
↔
x
1
st
R
y
∈
ran
1
st
R
∧
F
x
1
st
R
y
∈
Z
55
47
52
54
3imtr4d
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
F
-1
Z
∧
y
∈
F
-1
Z
→
x
1
st
R
y
∈
F
-1
Z
56
55
impl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
F
-1
Z
∧
y
∈
F
-1
Z
→
x
1
st
R
y
∈
F
-1
Z
57
56
ralrimiva
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
F
-1
Z
→
∀
y
∈
F
-1
Z
x
1
st
R
y
∈
F
-1
Z
58
34
anbi2i
⊢
x
∈
ran
1
st
R
∧
F
x
∈
Z
↔
x
∈
ran
1
st
R
∧
F
x
=
Z
59
eqid
⊢
2
nd
R
=
2
nd
R
60
4
59
5
rngocl
⊢
R
∈
RingOps
∧
z
∈
ran
1
st
R
∧
x
∈
ran
1
st
R
→
z
2
nd
R
x
∈
ran
1
st
R
61
60
3expb
⊢
R
∈
RingOps
∧
z
∈
ran
1
st
R
∧
x
∈
ran
1
st
R
→
z
2
nd
R
x
∈
ran
1
st
R
62
61
3ad2antl1
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
z
∈
ran
1
st
R
∧
x
∈
ran
1
st
R
→
z
2
nd
R
x
∈
ran
1
st
R
63
62
anass1rs
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
z
∈
ran
1
st
R
→
z
2
nd
R
x
∈
ran
1
st
R
64
63
adantlrr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
z
2
nd
R
x
∈
ran
1
st
R
65
eqid
⊢
2
nd
S
=
2
nd
S
66
4
5
59
65
rngohommul
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
z
∈
ran
1
st
R
∧
x
∈
ran
1
st
R
→
F
z
2
nd
R
x
=
F
z
2
nd
S
F
x
67
66
anass1rs
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
z
∈
ran
1
st
R
→
F
z
2
nd
R
x
=
F
z
2
nd
S
F
x
68
67
adantlrr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
z
2
nd
R
x
=
F
z
2
nd
S
F
x
69
oveq2
⊢
F
x
=
Z
→
F
z
2
nd
S
F
x
=
F
z
2
nd
S
Z
70
69
adantl
⊢
x
∈
ran
1
st
R
∧
F
x
=
Z
→
F
z
2
nd
S
F
x
=
F
z
2
nd
S
Z
71
70
ad2antlr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
z
2
nd
S
F
x
=
F
z
2
nd
S
Z
72
4
5
1
6
rngohomcl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
z
∈
ran
1
st
R
→
F
z
∈
ran
G
73
2
6
1
65
rngorz
⊢
S
∈
RingOps
∧
F
z
∈
ran
G
→
F
z
2
nd
S
Z
=
Z
74
73
3ad2antl2
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
F
z
∈
ran
G
→
F
z
2
nd
S
Z
=
Z
75
72
74
syldan
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
z
∈
ran
1
st
R
→
F
z
2
nd
S
Z
=
Z
76
75
adantlr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
z
2
nd
S
Z
=
Z
77
68
71
76
3eqtrd
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
z
2
nd
R
x
=
Z
78
fvex
⊢
F
z
2
nd
R
x
∈
V
79
78
elsn
⊢
F
z
2
nd
R
x
∈
Z
↔
F
z
2
nd
R
x
=
Z
80
77
79
sylibr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
z
2
nd
R
x
∈
Z
81
elpreima
⊢
F
Fn
ran
1
st
R
→
z
2
nd
R
x
∈
F
-1
Z
↔
z
2
nd
R
x
∈
ran
1
st
R
∧
F
z
2
nd
R
x
∈
Z
82
7
16
81
3syl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
z
2
nd
R
x
∈
F
-1
Z
↔
z
2
nd
R
x
∈
ran
1
st
R
∧
F
z
2
nd
R
x
∈
Z
83
82
ad2antrr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
z
2
nd
R
x
∈
F
-1
Z
↔
z
2
nd
R
x
∈
ran
1
st
R
∧
F
z
2
nd
R
x
∈
Z
84
64
80
83
mpbir2and
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
z
2
nd
R
x
∈
F
-1
Z
85
4
59
5
rngocl
⊢
R
∈
RingOps
∧
x
∈
ran
1
st
R
∧
z
∈
ran
1
st
R
→
x
2
nd
R
z
∈
ran
1
st
R
86
85
3expb
⊢
R
∈
RingOps
∧
x
∈
ran
1
st
R
∧
z
∈
ran
1
st
R
→
x
2
nd
R
z
∈
ran
1
st
R
87
86
3ad2antl1
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
z
∈
ran
1
st
R
→
x
2
nd
R
z
∈
ran
1
st
R
88
87
anassrs
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
z
∈
ran
1
st
R
→
x
2
nd
R
z
∈
ran
1
st
R
89
88
adantlrr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
x
2
nd
R
z
∈
ran
1
st
R
90
4
5
59
65
rngohommul
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
z
∈
ran
1
st
R
→
F
x
2
nd
R
z
=
F
x
2
nd
S
F
z
91
90
anassrs
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
z
∈
ran
1
st
R
→
F
x
2
nd
R
z
=
F
x
2
nd
S
F
z
92
91
adantlrr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
x
2
nd
R
z
=
F
x
2
nd
S
F
z
93
oveq1
⊢
F
x
=
Z
→
F
x
2
nd
S
F
z
=
Z
2
nd
S
F
z
94
93
adantl
⊢
x
∈
ran
1
st
R
∧
F
x
=
Z
→
F
x
2
nd
S
F
z
=
Z
2
nd
S
F
z
95
94
ad2antlr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
x
2
nd
S
F
z
=
Z
2
nd
S
F
z
96
2
6
1
65
rngolz
⊢
S
∈
RingOps
∧
F
z
∈
ran
G
→
Z
2
nd
S
F
z
=
Z
97
96
3ad2antl2
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
F
z
∈
ran
G
→
Z
2
nd
S
F
z
=
Z
98
72
97
syldan
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
z
∈
ran
1
st
R
→
Z
2
nd
S
F
z
=
Z
99
98
adantlr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
Z
2
nd
S
F
z
=
Z
100
92
95
99
3eqtrd
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
x
2
nd
R
z
=
Z
101
fvex
⊢
F
x
2
nd
R
z
∈
V
102
101
elsn
⊢
F
x
2
nd
R
z
∈
Z
↔
F
x
2
nd
R
z
=
Z
103
100
102
sylibr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
F
x
2
nd
R
z
∈
Z
104
elpreima
⊢
F
Fn
ran
1
st
R
→
x
2
nd
R
z
∈
F
-1
Z
↔
x
2
nd
R
z
∈
ran
1
st
R
∧
F
x
2
nd
R
z
∈
Z
105
7
16
104
3syl
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
2
nd
R
z
∈
F
-1
Z
↔
x
2
nd
R
z
∈
ran
1
st
R
∧
F
x
2
nd
R
z
∈
Z
106
105
ad2antrr
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
x
2
nd
R
z
∈
F
-1
Z
↔
x
2
nd
R
z
∈
ran
1
st
R
∧
F
x
2
nd
R
z
∈
Z
107
89
103
106
mpbir2and
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
x
2
nd
R
z
∈
F
-1
Z
108
84
107
jca
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
∧
z
∈
ran
1
st
R
→
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
109
108
ralrimiva
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
ran
1
st
R
∧
F
x
=
Z
→
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
110
109
ex
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
ran
1
st
R
∧
F
x
=
Z
→
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
111
58
110
biimtrid
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
ran
1
st
R
∧
F
x
∈
Z
→
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
112
49
111
sylbid
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
x
∈
F
-1
Z
→
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
113
112
imp
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
F
-1
Z
→
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
114
57
113
jca
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
x
∈
F
-1
Z
→
∀
y
∈
F
-1
Z
x
1
st
R
y
∈
F
-1
Z
∧
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
115
114
ralrimiva
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
∀
x
∈
F
-1
Z
∀
y
∈
F
-1
Z
x
1
st
R
y
∈
F
-1
Z
∧
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
116
4
59
5
9
isidl
⊢
R
∈
RingOps
→
F
-1
Z
∈
Idl
R
↔
F
-1
Z
⊆
ran
1
st
R
∧
GId
1
st
R
∈
F
-1
Z
∧
∀
x
∈
F
-1
Z
∀
y
∈
F
-1
Z
x
1
st
R
y
∈
F
-1
Z
∧
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
117
116
3ad2ant1
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
-1
Z
∈
Idl
R
↔
F
-1
Z
⊆
ran
1
st
R
∧
GId
1
st
R
∈
F
-1
Z
∧
∀
x
∈
F
-1
Z
∀
y
∈
F
-1
Z
x
1
st
R
y
∈
F
-1
Z
∧
∀
z
∈
ran
1
st
R
z
2
nd
R
x
∈
F
-1
Z
∧
x
2
nd
R
z
∈
F
-1
Z
118
8
19
115
117
mpbir3and
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
-1
Z
∈
Idl
R