Metamath Proof Explorer


Theorem keridl

Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses keridl.1 G=1stS
keridl.2 Z=GIdG
Assertion keridl RRingOpsSRingOpsFRRngHomSF-1ZIdlR

Proof

Step Hyp Ref Expression
1 keridl.1 G=1stS
2 keridl.2 Z=GIdG
3 cnvimass F-1ZdomF
4 eqid 1stR=1stR
5 eqid ran1stR=ran1stR
6 eqid ranG=ranG
7 4 5 1 6 rngohomf RRingOpsSRingOpsFRRngHomSF:ran1stRranG
8 3 7 fssdm RRingOpsSRingOpsFRRngHomSF-1Zran1stR
9 eqid GId1stR=GId1stR
10 4 5 9 rngo0cl RRingOpsGId1stRran1stR
11 10 3ad2ant1 RRingOpsSRingOpsFRRngHomSGId1stRran1stR
12 4 9 1 2 rngohom0 RRingOpsSRingOpsFRRngHomSFGId1stR=Z
13 fvex FGId1stRV
14 13 elsn FGId1stRZFGId1stR=Z
15 12 14 sylibr RRingOpsSRingOpsFRRngHomSFGId1stRZ
16 ffn F:ran1stRranGFFnran1stR
17 elpreima FFnran1stRGId1stRF-1ZGId1stRran1stRFGId1stRZ
18 7 16 17 3syl RRingOpsSRingOpsFRRngHomSGId1stRF-1ZGId1stRran1stRFGId1stRZ
19 11 15 18 mpbir2and RRingOpsSRingOpsFRRngHomSGId1stRF-1Z
20 an4 xran1stRFxZyran1stRFyZxran1stRyran1stRFxZFyZ
21 4 5 1 rngohomadd RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFx1stRy=FxGFy
22 21 adantr RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFx=ZFy=ZFx1stRy=FxGFy
23 oveq12 Fx=ZFy=ZFxGFy=ZGZ
24 23 adantl RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFx=ZFy=ZFxGFy=ZGZ
25 1 rngogrpo SRingOpsGGrpOp
26 6 2 grpoidcl GGrpOpZranG
27 6 2 grpolid GGrpOpZranGZGZ=Z
28 25 26 27 syl2anc2 SRingOpsZGZ=Z
29 28 3ad2ant2 RRingOpsSRingOpsFRRngHomSZGZ=Z
30 29 ad2antrr RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFx=ZFy=ZZGZ=Z
31 22 24 30 3eqtrd RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFx=ZFy=ZFx1stRy=Z
32 31 ex RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFx=ZFy=ZFx1stRy=Z
33 fvex FxV
34 33 elsn FxZFx=Z
35 fvex FyV
36 35 elsn FyZFy=Z
37 34 36 anbi12i FxZFyZFx=ZFy=Z
38 fvex Fx1stRyV
39 38 elsn Fx1stRyZFx1stRy=Z
40 32 37 39 3imtr4g RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFxZFyZFx1stRyZ
41 40 imdistanda RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFxZFyZxran1stRyran1stRFx1stRyZ
42 4 5 rngogcl RRingOpsxran1stRyran1stRx1stRyran1stR
43 42 3expib RRingOpsxran1stRyran1stRx1stRyran1stR
44 43 3ad2ant1 RRingOpsSRingOpsFRRngHomSxran1stRyran1stRx1stRyran1stR
45 44 anim1d RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFx1stRyZx1stRyran1stRFx1stRyZ
46 41 45 syld RRingOpsSRingOpsFRRngHomSxran1stRyran1stRFxZFyZx1stRyran1stRFx1stRyZ
47 20 46 biimtrid RRingOpsSRingOpsFRRngHomSxran1stRFxZyran1stRFyZx1stRyran1stRFx1stRyZ
48 elpreima FFnran1stRxF-1Zxran1stRFxZ
49 7 16 48 3syl RRingOpsSRingOpsFRRngHomSxF-1Zxran1stRFxZ
50 elpreima FFnran1stRyF-1Zyran1stRFyZ
51 7 16 50 3syl RRingOpsSRingOpsFRRngHomSyF-1Zyran1stRFyZ
52 49 51 anbi12d RRingOpsSRingOpsFRRngHomSxF-1ZyF-1Zxran1stRFxZyran1stRFyZ
53 elpreima FFnran1stRx1stRyF-1Zx1stRyran1stRFx1stRyZ
54 7 16 53 3syl RRingOpsSRingOpsFRRngHomSx1stRyF-1Zx1stRyran1stRFx1stRyZ
55 47 52 54 3imtr4d RRingOpsSRingOpsFRRngHomSxF-1ZyF-1Zx1stRyF-1Z
56 55 impl RRingOpsSRingOpsFRRngHomSxF-1ZyF-1Zx1stRyF-1Z
57 56 ralrimiva RRingOpsSRingOpsFRRngHomSxF-1ZyF-1Zx1stRyF-1Z
58 34 anbi2i xran1stRFxZxran1stRFx=Z
59 eqid 2ndR=2ndR
60 4 59 5 rngocl RRingOpszran1stRxran1stRz2ndRxran1stR
61 60 3expb RRingOpszran1stRxran1stRz2ndRxran1stR
62 61 3ad2antl1 RRingOpsSRingOpsFRRngHomSzran1stRxran1stRz2ndRxran1stR
63 62 anass1rs RRingOpsSRingOpsFRRngHomSxran1stRzran1stRz2ndRxran1stR
64 63 adantlrr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRz2ndRxran1stR
65 eqid 2ndS=2ndS
66 4 5 59 65 rngohommul RRingOpsSRingOpsFRRngHomSzran1stRxran1stRFz2ndRx=Fz2ndSFx
67 66 anass1rs RRingOpsSRingOpsFRRngHomSxran1stRzran1stRFz2ndRx=Fz2ndSFx
68 67 adantlrr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFz2ndRx=Fz2ndSFx
69 oveq2 Fx=ZFz2ndSFx=Fz2ndSZ
70 69 adantl xran1stRFx=ZFz2ndSFx=Fz2ndSZ
71 70 ad2antlr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFz2ndSFx=Fz2ndSZ
72 4 5 1 6 rngohomcl RRingOpsSRingOpsFRRngHomSzran1stRFzranG
73 2 6 1 65 rngorz SRingOpsFzranGFz2ndSZ=Z
74 73 3ad2antl2 RRingOpsSRingOpsFRRngHomSFzranGFz2ndSZ=Z
75 72 74 syldan RRingOpsSRingOpsFRRngHomSzran1stRFz2ndSZ=Z
76 75 adantlr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFz2ndSZ=Z
77 68 71 76 3eqtrd RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFz2ndRx=Z
78 fvex Fz2ndRxV
79 78 elsn Fz2ndRxZFz2ndRx=Z
80 77 79 sylibr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFz2ndRxZ
81 elpreima FFnran1stRz2ndRxF-1Zz2ndRxran1stRFz2ndRxZ
82 7 16 81 3syl RRingOpsSRingOpsFRRngHomSz2ndRxF-1Zz2ndRxran1stRFz2ndRxZ
83 82 ad2antrr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRz2ndRxF-1Zz2ndRxran1stRFz2ndRxZ
84 64 80 83 mpbir2and RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRz2ndRxF-1Z
85 4 59 5 rngocl RRingOpsxran1stRzran1stRx2ndRzran1stR
86 85 3expb RRingOpsxran1stRzran1stRx2ndRzran1stR
87 86 3ad2antl1 RRingOpsSRingOpsFRRngHomSxran1stRzran1stRx2ndRzran1stR
88 87 anassrs RRingOpsSRingOpsFRRngHomSxran1stRzran1stRx2ndRzran1stR
89 88 adantlrr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRx2ndRzran1stR
90 4 5 59 65 rngohommul RRingOpsSRingOpsFRRngHomSxran1stRzran1stRFx2ndRz=Fx2ndSFz
91 90 anassrs RRingOpsSRingOpsFRRngHomSxran1stRzran1stRFx2ndRz=Fx2ndSFz
92 91 adantlrr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFx2ndRz=Fx2ndSFz
93 oveq1 Fx=ZFx2ndSFz=Z2ndSFz
94 93 adantl xran1stRFx=ZFx2ndSFz=Z2ndSFz
95 94 ad2antlr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFx2ndSFz=Z2ndSFz
96 2 6 1 65 rngolz SRingOpsFzranGZ2ndSFz=Z
97 96 3ad2antl2 RRingOpsSRingOpsFRRngHomSFzranGZ2ndSFz=Z
98 72 97 syldan RRingOpsSRingOpsFRRngHomSzran1stRZ2ndSFz=Z
99 98 adantlr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRZ2ndSFz=Z
100 92 95 99 3eqtrd RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFx2ndRz=Z
101 fvex Fx2ndRzV
102 101 elsn Fx2ndRzZFx2ndRz=Z
103 100 102 sylibr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRFx2ndRzZ
104 elpreima FFnran1stRx2ndRzF-1Zx2ndRzran1stRFx2ndRzZ
105 7 16 104 3syl RRingOpsSRingOpsFRRngHomSx2ndRzF-1Zx2ndRzran1stRFx2ndRzZ
106 105 ad2antrr RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRx2ndRzF-1Zx2ndRzran1stRFx2ndRzZ
107 89 103 106 mpbir2and RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRx2ndRzF-1Z
108 84 107 jca RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
109 108 ralrimiva RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
110 109 ex RRingOpsSRingOpsFRRngHomSxran1stRFx=Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
111 58 110 biimtrid RRingOpsSRingOpsFRRngHomSxran1stRFxZzran1stRz2ndRxF-1Zx2ndRzF-1Z
112 49 111 sylbid RRingOpsSRingOpsFRRngHomSxF-1Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
113 112 imp RRingOpsSRingOpsFRRngHomSxF-1Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
114 57 113 jca RRingOpsSRingOpsFRRngHomSxF-1ZyF-1Zx1stRyF-1Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
115 114 ralrimiva RRingOpsSRingOpsFRRngHomSxF-1ZyF-1Zx1stRyF-1Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
116 4 59 5 9 isidl RRingOpsF-1ZIdlRF-1Zran1stRGId1stRF-1ZxF-1ZyF-1Zx1stRyF-1Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
117 116 3ad2ant1 RRingOpsSRingOpsFRRngHomSF-1ZIdlRF-1Zran1stRGId1stRF-1ZxF-1ZyF-1Zx1stRyF-1Zzran1stRz2ndRxF-1Zx2ndRzF-1Z
118 8 19 115 117 mpbir3and RRingOpsSRingOpsFRRngHomSF-1ZIdlR