Metamath Proof Explorer


Theorem lbslsat

Description: A nonzero vector X is a basis of a line spanned by the singleton X . Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms and for example lsatlspsn . (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypotheses lbslsat.v V=BaseW
lbslsat.n N=LSpanW
lbslsat.z 0˙=0W
lbslsat.y Y=W𝑠NX
Assertion lbslsat WLVecXVX0˙XLBasisY

Proof

Step Hyp Ref Expression
1 lbslsat.v V=BaseW
2 lbslsat.n N=LSpanW
3 lbslsat.z 0˙=0W
4 lbslsat.y Y=W𝑠NX
5 lveclmod WLVecWLMod
6 snssi XVXV
7 eqid LSubSpW=LSubSpW
8 1 7 2 lspcl WLModXVNXLSubSpW
9 5 6 8 syl2an WLVecXVNXLSubSpW
10 4 7 lsslvec WLVecNXLSubSpWYLVec
11 9 10 syldan WLVecXVYLVec
12 11 3adant3 WLVecXVX0˙YLVec
13 1 2 lspssid WLModXVXNX
14 5 6 13 syl2an WLVecXVXNX
15 1 2 lspssv WLModXVNXV
16 5 6 15 syl2an WLVecXVNXV
17 4 1 ressbas2 NXVNX=BaseY
18 16 17 syl WLVecXVNX=BaseY
19 14 18 sseqtrd WLVecXVXBaseY
20 19 3adant3 WLVecXVX0˙XBaseY
21 5 adantr WLVecXVWLMod
22 eqid LSpanY=LSpanY
23 4 2 22 7 lsslsp WLModNXLSubSpWXNXLSpanYX=NX
24 21 9 14 23 syl3anc WLVecXVLSpanYX=NX
25 24 3adant3 WLVecXVX0˙LSpanYX=NX
26 18 3adant3 WLVecXVX0˙NX=BaseY
27 25 26 eqtrd WLVecXVX0˙LSpanYX=BaseY
28 difid XX=
29 28 fveq2i LSpanYXX=LSpanY
30 29 a1i WLVecXVLSpanYXX=LSpanY
31 30 eleq2d WLVecXVXLSpanYXXXLSpanY
32 31 biimpa WLVecXVXLSpanYXXXLSpanY
33 lveclmod YLVecYLMod
34 eqid 0Y=0Y
35 34 22 lsp0 YLModLSpanY=0Y
36 11 33 35 3syl WLVecXVLSpanY=0Y
37 36 adantr WLVecXVXLSpanYXXLSpanY=0Y
38 32 37 eleqtrd WLVecXVXLSpanYXXX0Y
39 elsni X0YX=0Y
40 38 39 syl WLVecXVXLSpanYXXX=0Y
41 lmodgrp WLModWGrp
42 grpmnd WGrpWMnd
43 21 41 42 3syl WLVecXVWMnd
44 3 1 2 0ellsp WLModXV0˙NX
45 5 6 44 syl2an WLVecXV0˙NX
46 4 1 3 ress0g WMnd0˙NXNXV0˙=0Y
47 43 45 16 46 syl3anc WLVecXV0˙=0Y
48 47 adantr WLVecXVXLSpanYXX0˙=0Y
49 40 48 eqtr4d WLVecXVXLSpanYXXX=0˙
50 49 ex WLVecXVXLSpanYXXX=0˙
51 50 necon3ad WLVecXVX0˙¬XLSpanYXX
52 51 3impia WLVecXVX0˙¬XLSpanYXX
53 id x=Xx=X
54 sneq x=Xx=X
55 54 difeq2d x=XXx=XX
56 55 fveq2d x=XLSpanYXx=LSpanYXX
57 53 56 eleq12d x=XxLSpanYXxXLSpanYXX
58 57 notbid x=X¬xLSpanYXx¬XLSpanYXX
59 58 ralsng XVxX¬xLSpanYXx¬XLSpanYXX
60 59 3ad2ant2 WLVecXVX0˙xX¬xLSpanYXx¬XLSpanYXX
61 52 60 mpbird WLVecXVX0˙xX¬xLSpanYXx
62 eqid BaseY=BaseY
63 eqid LBasisY=LBasisY
64 62 63 22 islbs2 YLVecXLBasisYXBaseYLSpanYX=BaseYxX¬xLSpanYXx
65 64 biimpar YLVecXBaseYLSpanYX=BaseYxX¬xLSpanYXxXLBasisY
66 12 20 27 61 65 syl13anc WLVecXVX0˙XLBasisY