Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl6.h |
|
2 |
|
lcfl6.o |
|
3 |
|
lcfl6.u |
|
4 |
|
lcfl6.v |
|
5 |
|
lcfl6.a |
|
6 |
|
lcfl6.t |
|
7 |
|
lcfl6.s |
|
8 |
|
lcfl6.r |
|
9 |
|
lcfl6.z |
|
10 |
|
lcfl6.f |
|
11 |
|
lcfl6.l |
|
12 |
|
lcfl6.c |
|
13 |
|
lcfl6.k |
|
14 |
|
lcfl6.g |
|
15 |
|
df-ne |
|
16 |
|
eqid |
|
17 |
13
|
ad2antrr |
|
18 |
14
|
ad2antrr |
|
19 |
1 2 3 4 10 11 12 13 14
|
lcfl2 |
|
20 |
19
|
biimpa |
|
21 |
20
|
orcomd |
|
22 |
21
|
ord |
|
23 |
15 22
|
syl5bi |
|
24 |
23
|
imp |
|
25 |
1 2 3 4 7 9 16 10 11 17 18 24
|
dochkr1 |
|
26 |
1 3 13
|
dvhlmod |
|
27 |
4 10 11 26 14
|
lkrssv |
|
28 |
1 3 4 2
|
dochssv |
|
29 |
13 27 28
|
syl2anc |
|
30 |
29
|
ssdifd |
|
31 |
30
|
ad3antrrr |
|
32 |
|
simprl |
|
33 |
31 32
|
sseldd |
|
34 |
13
|
ad3antrrr |
|
35 |
14
|
ad3antrrr |
|
36 |
|
simprr |
|
37 |
1 2 3 4 5 6 7 16 8 9 10 11 34 35 32 36
|
lcfl6lem |
|
38 |
25 33 37
|
reximssdv |
|
39 |
38
|
ex |
|
40 |
15 39
|
syl5bir |
|
41 |
40
|
orrd |
|
42 |
41
|
ex |
|
43 |
|
olc |
|
44 |
43 19
|
syl5ibr |
|
45 |
13
|
adantr |
|
46 |
|
eldifi |
|
47 |
46
|
adantl |
|
48 |
47
|
snssd |
|
49 |
|
eqid |
|
50 |
1 49 3 4 2
|
dochcl |
|
51 |
45 48 50
|
syl2anc |
|
52 |
1 49 2
|
dochoc |
|
53 |
45 51 52
|
syl2anc |
|
54 |
53
|
3adant3 |
|
55 |
|
simp3 |
|
56 |
55
|
fveq2d |
|
57 |
|
eqid |
|
58 |
|
simpr |
|
59 |
1 2 3 4 9 5 6 11 7 8 57 45 58
|
dochsnkr2 |
|
60 |
59
|
3adant3 |
|
61 |
56 60
|
eqtrd |
|
62 |
61
|
fveq2d |
|
63 |
62
|
fveq2d |
|
64 |
54 63 61
|
3eqtr4d |
|
65 |
14
|
3ad2ant1 |
|
66 |
12 65
|
lcfl1 |
|
67 |
64 66
|
mpbird |
|
68 |
67
|
rexlimdv3a |
|
69 |
44 68
|
jaod |
|
70 |
42 69
|
impbid |
|