Metamath Proof Explorer


Theorem lcfl6

Description: Property of a functional with a closed kernel. Note that ( LG ) = V means the functional is zero by lkr0f . (Contributed by NM, 3-Jan-2015)

Ref Expression
Hypotheses lcfl6.h H=LHypK
lcfl6.o ˙=ocHKW
lcfl6.u U=DVecHKW
lcfl6.v V=BaseU
lcfl6.a +˙=+U
lcfl6.t ·˙=U
lcfl6.s S=ScalarU
lcfl6.r R=BaseS
lcfl6.z 0˙=0U
lcfl6.f F=LFnlU
lcfl6.l L=LKerU
lcfl6.c C=fF|˙˙Lf=Lf
lcfl6.k φKHLWH
lcfl6.g φGF
Assertion lcfl6 φGCLG=VxV0˙G=vVιkR|w˙xv=w+˙k·˙x

Proof

Step Hyp Ref Expression
1 lcfl6.h H=LHypK
2 lcfl6.o ˙=ocHKW
3 lcfl6.u U=DVecHKW
4 lcfl6.v V=BaseU
5 lcfl6.a +˙=+U
6 lcfl6.t ·˙=U
7 lcfl6.s S=ScalarU
8 lcfl6.r R=BaseS
9 lcfl6.z 0˙=0U
10 lcfl6.f F=LFnlU
11 lcfl6.l L=LKerU
12 lcfl6.c C=fF|˙˙Lf=Lf
13 lcfl6.k φKHLWH
14 lcfl6.g φGF
15 df-ne LGV¬LG=V
16 eqid 1S=1S
17 13 ad2antrr φGCLGVKHLWH
18 14 ad2antrr φGCLGVGF
19 1 2 3 4 10 11 12 13 14 lcfl2 φGC˙˙LGVLG=V
20 19 biimpa φGC˙˙LGVLG=V
21 20 orcomd φGCLG=V˙˙LGV
22 21 ord φGC¬LG=V˙˙LGV
23 15 22 biimtrid φGCLGV˙˙LGV
24 23 imp φGCLGV˙˙LGV
25 1 2 3 4 7 9 16 10 11 17 18 24 dochkr1 φGCLGVx˙LG0˙Gx=1S
26 1 3 13 dvhlmod φULMod
27 4 10 11 26 14 lkrssv φLGV
28 1 3 4 2 dochssv KHLWHLGV˙LGV
29 13 27 28 syl2anc φ˙LGV
30 29 ssdifd φ˙LG0˙V0˙
31 30 ad3antrrr φGCLGVx˙LG0˙Gx=1S˙LG0˙V0˙
32 simprl φGCLGVx˙LG0˙Gx=1Sx˙LG0˙
33 31 32 sseldd φGCLGVx˙LG0˙Gx=1SxV0˙
34 13 ad3antrrr φGCLGVx˙LG0˙Gx=1SKHLWH
35 14 ad3antrrr φGCLGVx˙LG0˙Gx=1SGF
36 simprr φGCLGVx˙LG0˙Gx=1SGx=1S
37 1 2 3 4 5 6 7 16 8 9 10 11 34 35 32 36 lcfl6lem φGCLGVx˙LG0˙Gx=1SG=vVιkR|w˙xv=w+˙k·˙x
38 25 33 37 reximssdv φGCLGVxV0˙G=vVιkR|w˙xv=w+˙k·˙x
39 38 ex φGCLGVxV0˙G=vVιkR|w˙xv=w+˙k·˙x
40 15 39 biimtrrid φGC¬LG=VxV0˙G=vVιkR|w˙xv=w+˙k·˙x
41 40 orrd φGCLG=VxV0˙G=vVιkR|w˙xv=w+˙k·˙x
42 41 ex φGCLG=VxV0˙G=vVιkR|w˙xv=w+˙k·˙x
43 olc LG=V˙˙LGVLG=V
44 43 19 imbitrrid φLG=VGC
45 13 adantr φxV0˙KHLWH
46 eldifi xV0˙xV
47 46 adantl φxV0˙xV
48 47 snssd φxV0˙xV
49 eqid DIsoHKW=DIsoHKW
50 1 49 3 4 2 dochcl KHLWHxV˙xranDIsoHKW
51 45 48 50 syl2anc φxV0˙˙xranDIsoHKW
52 1 49 2 dochoc KHLWH˙xranDIsoHKW˙˙˙x=˙x
53 45 51 52 syl2anc φxV0˙˙˙˙x=˙x
54 53 3adant3 φxV0˙G=vVιkR|w˙xv=w+˙k·˙x˙˙˙x=˙x
55 simp3 φxV0˙G=vVιkR|w˙xv=w+˙k·˙xG=vVιkR|w˙xv=w+˙k·˙x
56 55 fveq2d φxV0˙G=vVιkR|w˙xv=w+˙k·˙xLG=LvVιkR|w˙xv=w+˙k·˙x
57 eqid vVιkR|w˙xv=w+˙k·˙x=vVιkR|w˙xv=w+˙k·˙x
58 simpr φxV0˙xV0˙
59 1 2 3 4 9 5 6 11 7 8 57 45 58 dochsnkr2 φxV0˙LvVιkR|w˙xv=w+˙k·˙x=˙x
60 59 3adant3 φxV0˙G=vVιkR|w˙xv=w+˙k·˙xLvVιkR|w˙xv=w+˙k·˙x=˙x
61 56 60 eqtrd φxV0˙G=vVιkR|w˙xv=w+˙k·˙xLG=˙x
62 61 fveq2d φxV0˙G=vVιkR|w˙xv=w+˙k·˙x˙LG=˙˙x
63 62 fveq2d φxV0˙G=vVιkR|w˙xv=w+˙k·˙x˙˙LG=˙˙˙x
64 54 63 61 3eqtr4d φxV0˙G=vVιkR|w˙xv=w+˙k·˙x˙˙LG=LG
65 14 3ad2ant1 φxV0˙G=vVιkR|w˙xv=w+˙k·˙xGF
66 12 65 lcfl1 φxV0˙G=vVιkR|w˙xv=w+˙k·˙xGC˙˙LG=LG
67 64 66 mpbird φxV0˙G=vVιkR|w˙xv=w+˙k·˙xGC
68 67 rexlimdv3a φxV0˙G=vVιkR|w˙xv=w+˙k·˙xGC
69 44 68 jaod φLG=VxV0˙G=vVιkR|w˙xv=w+˙k·˙xGC
70 42 69 impbid φGCLG=VxV0˙G=vVιkR|w˙xv=w+˙k·˙x