Metamath Proof Explorer


Theorem lcfrlem31

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem28.jn φJYIQ
lcfrlem29.i F=invrS
lcfrlem30.m -˙=-D
lcfrlem30.c C=JX-˙FJYISJXIDJY
lcfrlem31.xi φJXIQ
lcfrlem31.cn φC=0D
Assertion lcfrlem31 φNX=NY

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem28.jn φJYIQ
23 lcfrlem29.i F=invrS
24 lcfrlem30.m -˙=-D
25 lcfrlem30.c C=JX-˙FJYISJXIDJY
26 lcfrlem31.xi φJXIQ
27 lcfrlem31.cn φC=0D
28 25 27 eqtr3id φJX-˙FJYISJXIDJY=0D
29 1 3 9 dvhlmod φULMod
30 21 29 lduallmod φDLMod
31 eqid LFnlU=LFnlU
32 eqid BaseD=BaseD
33 eqid 0D=0D
34 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
35 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 lcfrlem10 φJXLFnlU
36 31 21 32 29 35 ldualelvbase φJXBaseD
37 eqid D=D
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem29 φFJYISJXIR
39 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 lcfrlem10 φJYLFnlU
40 31 15 17 21 37 29 38 39 ldualvscl φFJYISJXIDJYLFnlU
41 31 21 32 29 40 ldualelvbase φFJYISJXIDJYBaseD
42 32 33 24 lmodsubeq0 DLModJXBaseDFJYISJXIDJYBaseDJX-˙FJYISJXIDJY=0DJX=FJYISJXIDJY
43 30 36 41 42 syl3anc φJX-˙FJYISJXIDJY=0DJX=FJYISJXIDJY
44 28 43 mpbid φJX=FJYISJXIDJY
45 44 fveq2d φLJX=LFJYISJXIDJY
46 1 3 9 dvhlvec φULVec
47 15 lvecdrng ULVecSDivRing
48 46 47 syl φSDivRing
49 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φBA
50 4 8 29 49 lsatssv φBV
51 50 19 sseldd φIV
52 15 17 4 31 lflcl ULModJYLFnlUIVJYIR
53 29 39 51 52 syl3anc φJYIR
54 17 16 23 drnginvrn0 SDivRingJYIRJYIQFJYIQ
55 48 53 22 54 syl3anc φFJYIQ
56 eqid S=S
57 17 16 23 drnginvrcl SDivRingJYIRJYIQFJYIR
58 48 53 22 57 syl3anc φFJYIR
59 15 17 4 31 lflcl ULModJXLFnlUIVJXIR
60 29 35 51 59 syl3anc φJXIR
61 17 16 56 48 58 60 drngmulne0 φFJYISJXIQFJYIQJXIQ
62 55 26 61 mpbir2and φFJYISJXIQ
63 15 17 16 31 20 21 37 46 39 38 62 ldualkrsc φLFJYISJXIDJY=LJY
64 45 63 eqtrd φLJX=LJY
65 64 fveq2d φ˙LJX=˙LJY
66 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 7 lcfrlem14 φ˙LJX=NX
67 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 7 lcfrlem14 φ˙LJY=NY
68 65 66 67 3eqtr3d φNX=NY