Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem17.h | |
|
lcfrlem17.o | |
||
lcfrlem17.u | |
||
lcfrlem17.v | |
||
lcfrlem17.p | |
||
lcfrlem17.z | |
||
lcfrlem17.n | |
||
lcfrlem17.a | |
||
lcfrlem17.k | |
||
lcfrlem17.x | |
||
lcfrlem17.y | |
||
lcfrlem17.ne | |
||
lcfrlem22.b | |
||
lcfrlem24.t | |
||
lcfrlem24.s | |
||
lcfrlem24.q | |
||
lcfrlem24.r | |
||
lcfrlem24.j | |
||
lcfrlem24.ib | |
||
lcfrlem24.l | |
||
lcfrlem25.d | |
||
lcfrlem28.jn | |
||
lcfrlem29.i | |
||
lcfrlem30.m | |
||
lcfrlem30.c | |
||
lcfrlem31.xi | |
||
lcfrlem31.cn | |
||
Assertion | lcfrlem31 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | |
|
2 | lcfrlem17.o | |
|
3 | lcfrlem17.u | |
|
4 | lcfrlem17.v | |
|
5 | lcfrlem17.p | |
|
6 | lcfrlem17.z | |
|
7 | lcfrlem17.n | |
|
8 | lcfrlem17.a | |
|
9 | lcfrlem17.k | |
|
10 | lcfrlem17.x | |
|
11 | lcfrlem17.y | |
|
12 | lcfrlem17.ne | |
|
13 | lcfrlem22.b | |
|
14 | lcfrlem24.t | |
|
15 | lcfrlem24.s | |
|
16 | lcfrlem24.q | |
|
17 | lcfrlem24.r | |
|
18 | lcfrlem24.j | |
|
19 | lcfrlem24.ib | |
|
20 | lcfrlem24.l | |
|
21 | lcfrlem25.d | |
|
22 | lcfrlem28.jn | |
|
23 | lcfrlem29.i | |
|
24 | lcfrlem30.m | |
|
25 | lcfrlem30.c | |
|
26 | lcfrlem31.xi | |
|
27 | lcfrlem31.cn | |
|
28 | 25 27 | eqtr3id | |
29 | 1 3 9 | dvhlmod | |
30 | 21 29 | lduallmod | |
31 | eqid | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 | lcfrlem10 | |
36 | 31 21 32 29 35 | ldualelvbase | |
37 | eqid | |
|
38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | lcfrlem29 | |
39 | 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 | lcfrlem10 | |
40 | 31 15 17 21 37 29 38 39 | ldualvscl | |
41 | 31 21 32 29 40 | ldualelvbase | |
42 | 32 33 24 | lmodsubeq0 | |
43 | 30 36 41 42 | syl3anc | |
44 | 28 43 | mpbid | |
45 | 44 | fveq2d | |
46 | 1 3 9 | dvhlvec | |
47 | 15 | lvecdrng | |
48 | 46 47 | syl | |
49 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | lcfrlem22 | |
50 | 4 8 29 49 | lsatssv | |
51 | 50 19 | sseldd | |
52 | 15 17 4 31 | lflcl | |
53 | 29 39 51 52 | syl3anc | |
54 | 17 16 23 | drnginvrn0 | |
55 | 48 53 22 54 | syl3anc | |
56 | eqid | |
|
57 | 17 16 23 | drnginvrcl | |
58 | 48 53 22 57 | syl3anc | |
59 | 15 17 4 31 | lflcl | |
60 | 29 35 51 59 | syl3anc | |
61 | 17 16 56 48 58 60 | drngmulne0 | |
62 | 55 26 61 | mpbir2and | |
63 | 15 17 16 31 20 21 37 46 39 38 62 | ldualkrsc | |
64 | 45 63 | eqtrd | |
65 | 64 | fveq2d | |
66 | 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 7 | lcfrlem14 | |
67 | 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 7 | lcfrlem14 | |
68 | 65 66 67 | 3eqtr3d | |