Metamath Proof Explorer


Theorem lecldbas

Description: The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis lecldbas.1 F=xran.*x
Assertion lecldbas ordTop=topGenfiranF

Proof

Step Hyp Ref Expression
1 lecldbas.1 F=xran.*x
2 eqid rany*y+∞=rany*y+∞
3 eqid rany*−∞y=rany*−∞y
4 2 3 leordtval2 ordTop=topGenfirany*y+∞rany*−∞y
5 fvex firanFV
6 fvex ordTopV
7 iccf .:*×*𝒫*
8 ffn .:*×*𝒫*.Fn*×*
9 7 8 ax-mp .Fn*×*
10 ovelrn .Fn*×*xran.a*b*x=ab
11 9 10 ax-mp xran.a*b*x=ab
12 difeq2 x=ab*x=*ab
13 iccordt abClsdordTop
14 letopuni *=ordTop
15 14 cldopn abClsdordTop*abordTop
16 13 15 ax-mp *abordTop
17 12 16 eqeltrdi x=ab*xordTop
18 17 rexlimivw b*x=ab*xordTop
19 18 rexlimivw a*b*x=ab*xordTop
20 11 19 sylbi xran.*xordTop
21 1 20 fmpti F:ran.ordTop
22 frn F:ran.ordTopranFordTop
23 21 22 ax-mp ranFordTop
24 6 23 ssexi ranFV
25 eqid y*y+∞=y*y+∞
26 mnfxr −∞*
27 fnovrn .Fn*×*−∞*y*−∞yran.
28 9 26 27 mp3an12 y*−∞yran.
29 26 a1i y*−∞*
30 id y*y*
31 pnfxr +∞*
32 31 a1i y*+∞*
33 mnfle y*−∞y
34 pnfge y*y+∞
35 df-icc .=a*,b*c*|accb
36 df-ioc .=a*,b*c*|a<ccb
37 xrltnle y*z*y<z¬zy
38 xrletr z*y*+∞*zyy+∞z+∞
39 xrlelttr −∞*y*z*−∞yy<z−∞<z
40 xrltle −∞*z*−∞<z−∞z
41 40 3adant2 −∞*y*z*−∞<z−∞z
42 39 41 syld −∞*y*z*−∞yy<z−∞z
43 35 36 37 35 38 42 ixxun −∞*y*+∞*−∞yy+∞−∞yy+∞=−∞+∞
44 29 30 32 33 34 43 syl32anc y*−∞yy+∞=−∞+∞
45 iccmax −∞+∞=*
46 44 45 eqtrdi y*−∞yy+∞=*
47 iccssxr −∞y*
48 35 36 37 ixxdisj −∞*y*+∞*−∞yy+∞=
49 26 31 48 mp3an13 y*−∞yy+∞=
50 uneqdifeq −∞y*−∞yy+∞=−∞yy+∞=**−∞y=y+∞
51 47 49 50 sylancr y*−∞yy+∞=**−∞y=y+∞
52 46 51 mpbid y**−∞y=y+∞
53 52 eqcomd y*y+∞=*−∞y
54 difeq2 x=−∞y*x=*−∞y
55 54 rspceeqv −∞yran.y+∞=*−∞yxran.y+∞=*x
56 28 53 55 syl2anc y*xran.y+∞=*x
57 xrex *V
58 57 difexi *xV
59 1 58 elrnmpti y+∞ranFxran.y+∞=*x
60 56 59 sylibr y*y+∞ranF
61 25 60 fmpti y*y+∞:*ranF
62 frn y*y+∞:*ranFrany*y+∞ranF
63 61 62 ax-mp rany*y+∞ranF
64 eqid y*−∞y=y*−∞y
65 fnovrn .Fn*×*y*+∞*y+∞ran.
66 9 31 65 mp3an13 y*y+∞ran.
67 df-ico .=a*,b*c*|acc<b
68 xrlenlt y*z*yz¬z<y
69 xrltletr z*y*+∞*z<yy+∞z<+∞
70 xrltle z*+∞*z<+∞z+∞
71 70 3adant2 z*y*+∞*z<+∞z+∞
72 69 71 syld z*y*+∞*z<yy+∞z+∞
73 xrletr −∞*y*z*−∞yyz−∞z
74 67 35 68 35 72 73 ixxun −∞*y*+∞*−∞yy+∞−∞yy+∞=−∞+∞
75 29 30 32 33 34 74 syl32anc y*−∞yy+∞=−∞+∞
76 uncom −∞yy+∞=y+∞−∞y
77 75 76 45 3eqtr3g y*y+∞−∞y=*
78 iccssxr y+∞*
79 incom y+∞−∞y=−∞yy+∞
80 67 35 68 ixxdisj −∞*y*+∞*−∞yy+∞=
81 26 31 80 mp3an13 y*−∞yy+∞=
82 79 81 eqtrid y*y+∞−∞y=
83 uneqdifeq y+∞*y+∞−∞y=y+∞−∞y=**y+∞=−∞y
84 78 82 83 sylancr y*y+∞−∞y=**y+∞=−∞y
85 77 84 mpbid y**y+∞=−∞y
86 85 eqcomd y*−∞y=*y+∞
87 difeq2 x=y+∞*x=*y+∞
88 87 rspceeqv y+∞ran.−∞y=*y+∞xran.−∞y=*x
89 66 86 88 syl2anc y*xran.−∞y=*x
90 1 58 elrnmpti −∞yranFxran.−∞y=*x
91 89 90 sylibr y*−∞yranF
92 64 91 fmpti y*−∞y:*ranF
93 frn y*−∞y:*ranFrany*−∞yranF
94 92 93 ax-mp rany*−∞yranF
95 63 94 unssi rany*y+∞rany*−∞yranF
96 fiss ranFVrany*y+∞rany*−∞yranFfirany*y+∞rany*−∞yfiranF
97 24 95 96 mp2an firany*y+∞rany*−∞yfiranF
98 tgss firanFVfirany*y+∞rany*−∞yfiranFtopGenfirany*y+∞rany*−∞ytopGenfiranF
99 5 97 98 mp2an topGenfirany*y+∞rany*−∞ytopGenfiranF
100 4 99 eqsstri ordToptopGenfiranF
101 letop ordTopTop
102 tgfiss ordTopTopranFordToptopGenfiranFordTop
103 101 23 102 mp2an topGenfiranFordTop
104 100 103 eqssi ordTop=topGenfiranF