Description: Lemma for lgsqr . (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lgsqr.y | |
|
lgsqr.s | |
||
lgsqr.b | |
||
lgsqr.d | |
||
lgsqr.o | |
||
lgsqr.e | |
||
lgsqr.x | |
||
lgsqr.m | |
||
lgsqr.u | |
||
lgsqr.t | |
||
lgsqr.l | |
||
lgsqr.1 | |
||
lgsqr.g | |
||
lgsqr.3 | |
||
lgsqr.4 | |
||
Assertion | lgsqrlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsqr.y | |
|
2 | lgsqr.s | |
|
3 | lgsqr.b | |
|
4 | lgsqr.d | |
|
5 | lgsqr.o | |
|
6 | lgsqr.e | |
|
7 | lgsqr.x | |
|
8 | lgsqr.m | |
|
9 | lgsqr.u | |
|
10 | lgsqr.t | |
|
11 | lgsqr.l | |
|
12 | lgsqr.1 | |
|
13 | lgsqr.g | |
|
14 | lgsqr.3 | |
|
15 | lgsqr.4 | |
|
16 | 12 | eldifad | |
17 | 1 | znfld | |
18 | 16 17 | syl | |
19 | fldidom | |
|
20 | 18 19 | syl | |
21 | isidom | |
|
22 | 21 | simplbi | |
23 | 20 22 | syl | |
24 | crngring | |
|
25 | 23 24 | syl | |
26 | 11 | zrhrhm | |
27 | 25 26 | syl | |
28 | zringbas | |
|
29 | eqid | |
|
30 | 28 29 | rhmf | |
31 | 27 30 | syl | |
32 | 31 14 | ffvelcdmd | |
33 | lgsvalmod | |
|
34 | 14 12 33 | syl2anc | |
35 | 15 | oveq1d | |
36 | 34 35 | eqtr3d | |
37 | 1 2 3 4 5 6 7 8 9 10 11 12 14 36 | lgsqrlem1 | |
38 | eqid | |
|
39 | eqid | |
|
40 | fvexd | |
|
41 | 5 2 38 29 | evl1rhm | |
42 | 23 41 | syl | |
43 | 3 39 | rhmf | |
44 | 42 43 | syl | |
45 | 2 | ply1ring | |
46 | 25 45 | syl | |
47 | ringgrp | |
|
48 | 46 47 | syl | |
49 | eqid | |
|
50 | 49 3 | mgpbas | |
51 | 49 | ringmgp | |
52 | 46 51 | syl | |
53 | oddprm | |
|
54 | 12 53 | syl | |
55 | 54 | nnnn0d | |
56 | 7 2 3 | vr1cl | |
57 | 25 56 | syl | |
58 | 50 6 52 55 57 | mulgnn0cld | |
59 | 3 9 | ringidcl | |
60 | 46 59 | syl | |
61 | 3 8 | grpsubcl | |
62 | 48 58 60 61 | syl3anc | |
63 | 10 62 | eqeltrid | |
64 | 44 63 | ffvelcdmd | |
65 | 38 29 39 18 40 64 | pwselbas | |
66 | 65 | ffnd | |
67 | fniniseg | |
|
68 | 66 67 | syl | |
69 | 32 37 68 | mpbir2and | |