Metamath Proof Explorer


Theorem limccnp2

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses limccnp2.r φ x A R X
limccnp2.s φ x A S Y
limccnp2.x φ X
limccnp2.y φ Y
limccnp2.k K = TopOpen fld
limccnp2.j J = K × t K 𝑡 X × Y
limccnp2.c φ C x A R lim B
limccnp2.d φ D x A S lim B
limccnp2.h φ H J CnP K C D
Assertion limccnp2 φ C H D x A R H S lim B

Proof

Step Hyp Ref Expression
1 limccnp2.r φ x A R X
2 limccnp2.s φ x A S Y
3 limccnp2.x φ X
4 limccnp2.y φ Y
5 limccnp2.k K = TopOpen fld
6 limccnp2.j J = K × t K 𝑡 X × Y
7 limccnp2.c φ C x A R lim B
8 limccnp2.d φ D x A S lim B
9 limccnp2.h φ H J CnP K C D
10 eqid J = J
11 10 cnprcl H J CnP K C D C D J
12 9 11 syl φ C D J
13 5 cnfldtopon K TopOn
14 txtopon K TopOn K TopOn K × t K TopOn ×
15 13 13 14 mp2an K × t K TopOn ×
16 xpss12 X Y X × Y ×
17 3 4 16 syl2anc φ X × Y ×
18 resttopon K × t K TopOn × X × Y × K × t K 𝑡 X × Y TopOn X × Y
19 15 17 18 sylancr φ K × t K 𝑡 X × Y TopOn X × Y
20 6 19 eqeltrid φ J TopOn X × Y
21 toponuni J TopOn X × Y X × Y = J
22 20 21 syl φ X × Y = J
23 12 22 eleqtrrd φ C D X × Y
24 opelxp C D X × Y C X D Y
25 23 24 sylib φ C X D Y
26 25 simpld φ C X
27 26 ad2antrr φ x A B x = B C X
28 simpll φ x A B ¬ x = B φ
29 simpr φ x A B x A B
30 elun x A B x A x B
31 29 30 sylib φ x A B x A x B
32 31 ord φ x A B ¬ x A x B
33 elsni x B x = B
34 32 33 syl6 φ x A B ¬ x A x = B
35 34 con1d φ x A B ¬ x = B x A
36 35 imp φ x A B ¬ x = B x A
37 28 36 1 syl2anc φ x A B ¬ x = B R X
38 27 37 ifclda φ x A B if x = B C R X
39 25 simprd φ D Y
40 39 ad2antrr φ x A B x = B D Y
41 28 36 2 syl2anc φ x A B ¬ x = B S Y
42 40 41 ifclda φ x A B if x = B D S Y
43 38 42 opelxpd φ x A B if x = B C R if x = B D S X × Y
44 eqidd φ x A B if x = B C R if x = B D S = x A B if x = B C R if x = B D S
45 13 a1i φ K TopOn
46 cnpf2 J TopOn X × Y K TopOn H J CnP K C D H : X × Y
47 20 45 9 46 syl3anc φ H : X × Y
48 47 feqmptd φ H = y X × Y H y
49 fveq2 y = if x = B C R if x = B D S H y = H if x = B C R if x = B D S
50 df-ov if x = B C R H if x = B D S = H if x = B C R if x = B D S
51 ovif12 if x = B C R H if x = B D S = if x = B C H D R H S
52 50 51 eqtr3i H if x = B C R if x = B D S = if x = B C H D R H S
53 49 52 eqtrdi y = if x = B C R if x = B D S H y = if x = B C H D R H S
54 43 44 48 53 fmptco φ H x A B if x = B C R if x = B D S = x A B if x = B C H D R H S
55 eqid x A R = x A R
56 55 1 dmmptd φ dom x A R = A
57 limcrcl C x A R lim B x A R : dom x A R dom x A R B
58 7 57 syl φ x A R : dom x A R dom x A R B
59 58 simp2d φ dom x A R
60 56 59 eqsstrrd φ A
61 58 simp3d φ B
62 61 snssd φ B
63 60 62 unssd φ A B
64 resttopon K TopOn A B K 𝑡 A B TopOn A B
65 13 63 64 sylancr φ K 𝑡 A B TopOn A B
66 ssun2 B A B
67 snssg B B A B B A B
68 61 67 syl φ B A B B A B
69 66 68 mpbiri φ B A B
70 3 adantr φ x A X
71 70 1 sseldd φ x A R
72 eqid K 𝑡 A B = K 𝑡 A B
73 60 61 71 72 5 limcmpt φ C x A R lim B x A B if x = B C R K 𝑡 A B CnP K B
74 7 73 mpbid φ x A B if x = B C R K 𝑡 A B CnP K B
75 4 adantr φ x A Y
76 75 2 sseldd φ x A S
77 60 61 76 72 5 limcmpt φ D x A S lim B x A B if x = B D S K 𝑡 A B CnP K B
78 8 77 mpbid φ x A B if x = B D S K 𝑡 A B CnP K B
79 65 45 45 69 74 78 txcnp φ x A B if x = B C R if x = B D S K 𝑡 A B CnP K × t K B
80 15 topontopi K × t K Top
81 80 a1i φ K × t K Top
82 43 fmpttd φ x A B if x = B C R if x = B D S : A B X × Y
83 toponuni K 𝑡 A B TopOn A B A B = K 𝑡 A B
84 65 83 syl φ A B = K 𝑡 A B
85 84 feq2d φ x A B if x = B C R if x = B D S : A B X × Y x A B if x = B C R if x = B D S : K 𝑡 A B X × Y
86 82 85 mpbid φ x A B if x = B C R if x = B D S : K 𝑡 A B X × Y
87 eqid K 𝑡 A B = K 𝑡 A B
88 15 toponunii × = K × t K
89 87 88 cnprest2 K × t K Top x A B if x = B C R if x = B D S : K 𝑡 A B X × Y X × Y × x A B if x = B C R if x = B D S K 𝑡 A B CnP K × t K B x A B if x = B C R if x = B D S K 𝑡 A B CnP K × t K 𝑡 X × Y B
90 81 86 17 89 syl3anc φ x A B if x = B C R if x = B D S K 𝑡 A B CnP K × t K B x A B if x = B C R if x = B D S K 𝑡 A B CnP K × t K 𝑡 X × Y B
91 79 90 mpbid φ x A B if x = B C R if x = B D S K 𝑡 A B CnP K × t K 𝑡 X × Y B
92 6 oveq2i K 𝑡 A B CnP J = K 𝑡 A B CnP K × t K 𝑡 X × Y
93 92 fveq1i K 𝑡 A B CnP J B = K 𝑡 A B CnP K × t K 𝑡 X × Y B
94 91 93 eleqtrrdi φ x A B if x = B C R if x = B D S K 𝑡 A B CnP J B
95 iftrue x = B if x = B C R = C
96 iftrue x = B if x = B D S = D
97 95 96 opeq12d x = B if x = B C R if x = B D S = C D
98 eqid x A B if x = B C R if x = B D S = x A B if x = B C R if x = B D S
99 opex C D V
100 97 98 99 fvmpt B A B x A B if x = B C R if x = B D S B = C D
101 69 100 syl φ x A B if x = B C R if x = B D S B = C D
102 101 fveq2d φ J CnP K x A B if x = B C R if x = B D S B = J CnP K C D
103 9 102 eleqtrrd φ H J CnP K x A B if x = B C R if x = B D S B
104 cnpco x A B if x = B C R if x = B D S K 𝑡 A B CnP J B H J CnP K x A B if x = B C R if x = B D S B H x A B if x = B C R if x = B D S K 𝑡 A B CnP K B
105 94 103 104 syl2anc φ H x A B if x = B C R if x = B D S K 𝑡 A B CnP K B
106 54 105 eqeltrrd φ x A B if x = B C H D R H S K 𝑡 A B CnP K B
107 47 adantr φ x A H : X × Y
108 107 1 2 fovrnd φ x A R H S
109 60 61 108 72 5 limcmpt φ C H D x A R H S lim B x A B if x = B C H D R H S K 𝑡 A B CnP K B
110 106 109 mpbird φ C H D x A R H S lim B