Metamath Proof Explorer


Theorem liminflbuz2

Description: A sequence with values in the extended reals, and with liminf that is not -oo , is eventually greater than -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses liminflbuz2.1 jφ
liminflbuz2.2 _jF
liminflbuz2.3 φM
liminflbuz2.4 Z=M
liminflbuz2.5 φF:Z*
liminflbuz2.6 φlim infF−∞
Assertion liminflbuz2 φkZjk−∞<Fj

Proof

Step Hyp Ref Expression
1 liminflbuz2.1 jφ
2 liminflbuz2.2 _jF
3 liminflbuz2.3 φM
4 liminflbuz2.4 Z=M
5 liminflbuz2.5 φF:Z*
6 liminflbuz2.6 φlim infF−∞
7 nfv jkZ
8 1 7 nfan jφkZ
9 simpll φkZjkφ
10 4 uztrn2 kZjkjZ
11 10 adantll φkZjkjZ
12 5 ffvelcdmda φjZFj*
13 12 adantr φjZ¬−∞<FjFj*
14 mnfxr −∞*
15 14 a1i φjZ¬−∞<Fj−∞*
16 simpr φjZ¬−∞<Fj¬−∞<Fj
17 13 15 16 xrnltled φjZ¬−∞<FjFj−∞
18 xlemnf Fj*Fj−∞Fj=−∞
19 13 18 syl φjZ¬−∞<FjFj−∞Fj=−∞
20 17 19 mpbid φjZ¬−∞<FjFj=−∞
21 xnegeq Fj=−∞Fj=−∞
22 xnegmnf −∞=+∞
23 21 22 eqtrdi Fj=−∞Fj=+∞
24 20 23 syl φjZ¬−∞<FjFj=+∞
25 24 adantlr φjZFj+∞¬−∞<FjFj=+∞
26 neneq Fj+∞¬Fj=+∞
27 26 ad2antlr φjZFj+∞¬−∞<Fj¬Fj=+∞
28 25 27 condan φjZFj+∞−∞<Fj
29 28 ex φjZFj+∞−∞<Fj
30 9 11 29 syl2anc φkZjkFj+∞−∞<Fj
31 8 30 ralimdaa φkZjkFj+∞jk−∞<Fj
32 31 imp φkZjkFj+∞jk−∞<Fj
33 12 xnegcld φjZFj*
34 33 adantr φjZjZFjj<+∞Fj*
35 pnfxr +∞*
36 35 a1i φjZjZFjj<+∞+∞*
37 eqidd φjZFj=jZFj
38 37 33 fvmpt2d φjZjZFjj=Fj
39 38 adantr φjZjZFjj<+∞jZFjj=Fj
40 simpr φjZjZFjj<+∞jZFjj<+∞
41 39 40 eqbrtrrd φjZjZFjj<+∞Fj<+∞
42 34 36 41 xrltned φjZjZFjj<+∞Fj+∞
43 42 ex φjZjZFjj<+∞Fj+∞
44 9 11 43 syl2anc φkZjkjZFjj<+∞Fj+∞
45 8 44 ralimdaa φkZjkjZFjj<+∞jkFj+∞
46 45 imp φkZjkjZFjj<+∞jkFj+∞
47 nfmpt1 _jjZFj
48 1 33 fmptd2f φjZFj:Z*
49 4 fvexi ZV
50 49 a1i φZV
51 5 50 fexd φFV
52 51 liminfcld φlim infF*
53 52 xnegnegd φlim infF=lim infF
54 1 2 3 4 5 liminfvaluz3 φlim infF=lim supjZFj
55 53 54 eqtr2d φlim supjZFj=lim infF
56 50 mptexd φjZFjV
57 56 limsupcld φlim supjZFj*
58 52 xnegcld φlim infF*
59 xneg11 lim supjZFj*lim infF*lim supjZFj=lim infFlim supjZFj=lim infF
60 57 58 59 syl2anc φlim supjZFj=lim infFlim supjZFj=lim infF
61 55 60 mpbid φlim supjZFj=lim infF
62 nne ¬lim infF+∞lim infF=+∞
63 53 eqcomd φlim infF=lim infF
64 63 adantr φlim infF=+∞lim infF=lim infF
65 xnegeq lim infF=+∞lim infF=+∞
66 65 adantl φlim infF=+∞lim infF=+∞
67 xnegpnf +∞=−∞
68 67 a1i φlim infF=+∞+∞=−∞
69 64 66 68 3eqtrd φlim infF=+∞lim infF=−∞
70 62 69 sylan2b φ¬lim infF+∞lim infF=−∞
71 6 neneqd φ¬lim infF=−∞
72 71 adantr φ¬lim infF+∞¬lim infF=−∞
73 70 72 condan φlim infF+∞
74 61 73 eqnetrd φlim supjZFj+∞
75 1 47 3 4 48 74 limsupubuz2 φkZjkjZFjj<+∞
76 46 75 reximddv3 φkZjkFj+∞
77 32 76 reximddv3 φkZjk−∞<Fj