Metamath Proof Explorer


Theorem liminfval2

Description: The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval2.1 G=ksupFk+∞**<
liminfval2.2 φFV
liminfval2.3 φA
liminfval2.4 φsupA*<=+∞
Assertion liminfval2 φlim infF=supGA*<

Proof

Step Hyp Ref Expression
1 liminfval2.1 G=ksupFk+∞**<
2 liminfval2.2 φFV
3 liminfval2.3 φA
4 liminfval2.4 φsupA*<=+∞
5 oveq1 k=jk+∞=j+∞
6 5 imaeq2d k=jFk+∞=Fj+∞
7 6 ineq1d k=jFk+∞*=Fj+∞*
8 7 infeq1d k=jsupFk+∞**<=supFj+∞**<
9 8 cbvmptv ksupFk+∞**<=jsupFj+∞**<
10 1 9 eqtri G=jsupFj+∞**<
11 10 liminfval FVlim infF=supranG*<
12 2 11 syl φlim infF=supranG*<
13 3 ssrexr φA*
14 supxrunb1 A*nxAnxsupA*<=+∞
15 13 14 syl φnxAnxsupA*<=+∞
16 4 15 mpbird φnxAnx
17 10 liminfgf G:*
18 17 ffvelcdmi nGn*
19 18 ad2antlr φnxAnxGn*
20 simpll φnxAnxφ
21 simprl φnxAnxxA
22 3 sselda φxAx
23 17 ffvelcdmi xGx*
24 22 23 syl φxAGx*
25 20 21 24 syl2anc φnxAnxGx*
26 imassrn GAranG
27 frn G:*ranG*
28 17 27 ax-mp ranG*
29 26 28 sstri GA*
30 supxrcl GA*supGA*<*
31 29 30 ax-mp supGA*<*
32 31 a1i φnxAnxsupGA*<*
33 simplr φnxAnxn
34 20 21 22 syl2anc φnxAnxx
35 simprr φnxAnxnx
36 liminfgord nxnxsupFn+∞**<supFx+∞**<
37 33 34 35 36 syl3anc φnxAnxsupFn+∞**<supFx+∞**<
38 10 liminfgval nGn=supFn+∞**<
39 38 ad2antlr φnxAGn=supFn+∞**<
40 10 liminfgval xGx=supFx+∞**<
41 22 40 syl φxAGx=supFx+∞**<
42 41 adantlr φnxAGx=supFx+∞**<
43 39 42 breq12d φnxAGnGxsupFn+∞**<supFx+∞**<
44 43 adantrr φnxAnxGnGxsupFn+∞**<supFx+∞**<
45 37 44 mpbird φnxAnxGnGx
46 29 a1i φxAGA*
47 nfv jφ
48 inss2 Fj+∞**
49 infxrcl Fj+∞**supFj+∞**<*
50 48 49 ax-mp supFj+∞**<*
51 50 a1i φjsupFj+∞**<*
52 47 51 10 fnmptd φGFn
53 52 adantr φxAGFn
54 simpr φxAxA
55 53 22 54 fnfvimad φxAGxGA
56 supxrub GA*GxGAGxsupGA*<
57 46 55 56 syl2anc φxAGxsupGA*<
58 20 21 57 syl2anc φnxAnxGxsupGA*<
59 19 25 32 45 58 xrletrd φnxAnxGnsupGA*<
60 59 rexlimdvaa φnxAnxGnsupGA*<
61 60 ralimdva φnxAnxnGnsupGA*<
62 16 61 mpd φnGnsupGA*<
63 xrltso <Or*
64 63 infex supFj+∞**<V
65 64 rgenw jsupFj+∞**<V
66 10 fnmpt jsupFj+∞**<VGFn
67 65 66 ax-mp GFn
68 breq1 x=GnxsupGA*<GnsupGA*<
69 68 ralrn GFnxranGxsupGA*<nGnsupGA*<
70 67 69 ax-mp xranGxsupGA*<nGnsupGA*<
71 62 70 sylibr φxranGxsupGA*<
72 supxrleub ranG*supGA*<*supranG*<supGA*<xranGxsupGA*<
73 28 31 72 mp2an supranG*<supGA*<xranGxsupGA*<
74 71 73 sylibr φsupranG*<supGA*<
75 26 a1i φGAranG
76 28 a1i φranG*
77 supxrss GAranGranG*supGA*<supranG*<
78 75 76 77 syl2anc φsupGA*<supranG*<
79 supxrcl ranG*supranG*<*
80 28 79 ax-mp supranG*<*
81 xrletri3 supranG*<*supGA*<*supranG*<=supGA*<supranG*<supGA*<supGA*<supranG*<
82 80 31 81 mp2an supranG*<=supGA*<supranG*<supGA*<supGA*<supranG*<
83 74 78 82 sylanbrc φsupranG*<=supGA*<
84 12 83 eqtrd φlim infF=supGA*<