Metamath Proof Explorer


Theorem limsupmnfuzlem

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnfuzlem.1 φ M
limsupmnfuzlem.2 Z = M
limsupmnfuzlem.3 φ F : Z *
Assertion limsupmnfuzlem φ lim sup F = −∞ x k Z j k F j x

Proof

Step Hyp Ref Expression
1 limsupmnfuzlem.1 φ M
2 limsupmnfuzlem.2 Z = M
3 limsupmnfuzlem.3 φ F : Z *
4 nfcv _ j F
5 uzssre M
6 2 5 eqsstri Z
7 6 a1i φ Z
8 4 7 3 limsupmnf φ lim sup F = −∞ x k j Z k j F j x
9 breq1 k = i k j i j
10 9 imbi1d k = i k j F j x i j F j x
11 10 ralbidv k = i j Z k j F j x j Z i j F j x
12 11 cbvrexvw k j Z k j F j x i j Z i j F j x
13 12 biimpi k j Z k j F j x i j Z i j F j x
14 iftrue M i if M i i M = i
15 14 adantl φ i M i if M i i M = i
16 1 ad2antrr φ i M i M
17 ceilcl i i
18 17 ad2antlr φ i M i i
19 simpr φ i M i M i
20 2 16 18 19 eluzd φ i M i i Z
21 15 20 eqeltrd φ i M i if M i i M Z
22 iffalse ¬ M i if M i i M = M
23 22 adantl φ i ¬ M i if M i i M = M
24 1 2 uzidd2 φ M Z
25 24 ad2antrr φ i ¬ M i M Z
26 23 25 eqeltrd φ i ¬ M i if M i i M Z
27 21 26 pm2.61dan φ i if M i i M Z
28 27 3adant3 φ i j Z i j F j x if M i i M Z
29 nfv j φ
30 nfv j i
31 nfra1 j j Z i j F j x
32 29 30 31 nf3an j φ i j Z i j F j x
33 simplr φ i j if M i i M i
34 6 27 sselid φ i if M i i M
35 34 adantr φ i j if M i i M if M i i M
36 eluzelre j if M i i M j
37 36 adantl φ i j if M i i M j
38 simpr φ i i
39 17 zred i i
40 39 adantl φ i i
41 ceilge i i i
42 41 adantl φ i i i
43 6 24 sselid φ M
44 43 adantr φ i M
45 max2 M i i if M i i M
46 44 40 45 syl2anc φ i i if M i i M
47 38 40 34 42 46 letrd φ i i if M i i M
48 47 adantr φ i j if M i i M i if M i i M
49 eluzle j if M i i M if M i i M j
50 49 adantl φ i j if M i i M if M i i M j
51 33 35 37 48 50 letrd φ i j if M i i M i j
52 51 3adantl3 φ i j Z i j F j x j if M i i M i j
53 simpl3 φ i j Z i j F j x j if M i i M j Z i j F j x
54 1 ad2antrr φ i j if M i i M M
55 eluzelz j if M i i M j
56 55 adantl φ i j if M i i M j
57 44 adantr φ i j if M i i M M
58 max1 M i M if M i i M
59 43 39 58 syl2an φ i M if M i i M
60 59 adantr φ i j if M i i M M if M i i M
61 57 35 37 60 50 letrd φ i j if M i i M M j
62 2 54 56 61 eluzd φ i j if M i i M j Z
63 62 3adantl3 φ i j Z i j F j x j if M i i M j Z
64 rspa j Z i j F j x j Z i j F j x
65 53 63 64 syl2anc φ i j Z i j F j x j if M i i M i j F j x
66 52 65 mpd φ i j Z i j F j x j if M i i M F j x
67 66 ex φ i j Z i j F j x j if M i i M F j x
68 32 67 ralrimi φ i j Z i j F j x j if M i i M F j x
69 fveq2 k = if M i i M k = if M i i M
70 69 raleqdv k = if M i i M j k F j x j if M i i M F j x
71 70 rspcev if M i i M Z j if M i i M F j x k Z j k F j x
72 28 68 71 syl2anc φ i j Z i j F j x k Z j k F j x
73 72 3exp φ i j Z i j F j x k Z j k F j x
74 73 rexlimdv φ i j Z i j F j x k Z j k F j x
75 74 imp φ i j Z i j F j x k Z j k F j x
76 13 75 sylan2 φ k j Z k j F j x k Z j k F j x
77 76 ex φ k j Z k j F j x k Z j k F j x
78 rexss Z k Z j k F j x k k Z j k F j x
79 6 78 ax-mp k Z j k F j x k k Z j k F j x
80 79 biimpi k Z j k F j x k k Z j k F j x
81 nfv j k Z
82 nfra1 j j k F j x
83 81 82 nfan j k Z j k F j x
84 simp1r k Z j k F j x j Z k j j k F j x
85 eqid k = k
86 2 eluzelz2 k Z k
87 86 3ad2ant1 k Z j Z k j k
88 2 eluzelz2 j Z j
89 88 3ad2ant2 k Z j Z k j j
90 simp3 k Z j Z k j k j
91 85 87 89 90 eluzd k Z j Z k j j k
92 91 3adant1r k Z j k F j x j Z k j j k
93 rspa j k F j x j k F j x
94 84 92 93 syl2anc k Z j k F j x j Z k j F j x
95 94 3exp k Z j k F j x j Z k j F j x
96 83 95 ralrimi k Z j k F j x j Z k j F j x
97 96 a1i φ k Z j k F j x j Z k j F j x
98 97 reximdv φ k k Z j k F j x k j Z k j F j x
99 98 imp φ k k Z j k F j x k j Z k j F j x
100 80 99 sylan2 φ k Z j k F j x k j Z k j F j x
101 100 ex φ k Z j k F j x k j Z k j F j x
102 77 101 impbid φ k j Z k j F j x k Z j k F j x
103 102 ralbidv φ x k j Z k j F j x x k Z j k F j x
104 8 103 bitrd φ lim sup F = −∞ x k Z j k F j x