| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsupmnfuzlem.1 |  | 
						
							| 2 |  | limsupmnfuzlem.2 |  | 
						
							| 3 |  | limsupmnfuzlem.3 |  | 
						
							| 4 |  | nfcv |  | 
						
							| 5 |  | uzssre |  | 
						
							| 6 | 2 5 | eqsstri |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 | 4 7 3 | limsupmnf |  | 
						
							| 9 |  | breq1 |  | 
						
							| 10 | 9 | imbi1d |  | 
						
							| 11 | 10 | ralbidv |  | 
						
							| 12 | 11 | cbvrexvw |  | 
						
							| 13 | 12 | biimpi |  | 
						
							| 14 |  | iftrue |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 1 | ad2antrr |  | 
						
							| 17 |  | ceilcl |  | 
						
							| 18 | 17 | ad2antlr |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 | 2 16 18 19 | eluzd |  | 
						
							| 21 | 15 20 | eqeltrd |  | 
						
							| 22 |  | iffalse |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 1 2 | uzidd2 |  | 
						
							| 25 | 24 | ad2antrr |  | 
						
							| 26 | 23 25 | eqeltrd |  | 
						
							| 27 | 21 26 | pm2.61dan |  | 
						
							| 28 | 27 | 3adant3 |  | 
						
							| 29 |  | nfv |  | 
						
							| 30 |  | nfv |  | 
						
							| 31 |  | nfra1 |  | 
						
							| 32 | 29 30 31 | nf3an |  | 
						
							| 33 |  | simplr |  | 
						
							| 34 | 6 27 | sselid |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | eluzelre |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 | 17 | zred |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 |  | ceilge |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 | 6 24 | sselid |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 |  | max2 |  | 
						
							| 46 | 44 40 45 | syl2anc |  | 
						
							| 47 | 38 40 34 42 46 | letrd |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 |  | eluzle |  | 
						
							| 50 | 49 | adantl |  | 
						
							| 51 | 33 35 37 48 50 | letrd |  | 
						
							| 52 | 51 | 3adantl3 |  | 
						
							| 53 |  | simpl3 |  | 
						
							| 54 | 1 | ad2antrr |  | 
						
							| 55 |  | eluzelz |  | 
						
							| 56 | 55 | adantl |  | 
						
							| 57 | 44 | adantr |  | 
						
							| 58 |  | max1 |  | 
						
							| 59 | 43 39 58 | syl2an |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 | 57 35 37 60 50 | letrd |  | 
						
							| 62 | 2 54 56 61 | eluzd |  | 
						
							| 63 | 62 | 3adantl3 |  | 
						
							| 64 |  | rspa |  | 
						
							| 65 | 53 63 64 | syl2anc |  | 
						
							| 66 | 52 65 | mpd |  | 
						
							| 67 | 66 | ex |  | 
						
							| 68 | 32 67 | ralrimi |  | 
						
							| 69 |  | fveq2 |  | 
						
							| 70 | 69 | raleqdv |  | 
						
							| 71 | 70 | rspcev |  | 
						
							| 72 | 28 68 71 | syl2anc |  | 
						
							| 73 | 72 | 3exp |  | 
						
							| 74 | 73 | rexlimdv |  | 
						
							| 75 | 74 | imp |  | 
						
							| 76 | 13 75 | sylan2 |  | 
						
							| 77 | 76 | ex |  | 
						
							| 78 |  | rexss |  | 
						
							| 79 | 6 78 | ax-mp |  | 
						
							| 80 | 79 | biimpi |  | 
						
							| 81 |  | nfv |  | 
						
							| 82 |  | nfra1 |  | 
						
							| 83 | 81 82 | nfan |  | 
						
							| 84 |  | simp1r |  | 
						
							| 85 |  | eqid |  | 
						
							| 86 | 2 | eluzelz2 |  | 
						
							| 87 | 86 | 3ad2ant1 |  | 
						
							| 88 | 2 | eluzelz2 |  | 
						
							| 89 | 88 | 3ad2ant2 |  | 
						
							| 90 |  | simp3 |  | 
						
							| 91 | 85 87 89 90 | eluzd |  | 
						
							| 92 | 91 | 3adant1r |  | 
						
							| 93 |  | rspa |  | 
						
							| 94 | 84 92 93 | syl2anc |  | 
						
							| 95 | 94 | 3exp |  | 
						
							| 96 | 83 95 | ralrimi |  | 
						
							| 97 | 96 | a1i |  | 
						
							| 98 | 97 | reximdv |  | 
						
							| 99 | 98 | imp |  | 
						
							| 100 | 80 99 | sylan2 |  | 
						
							| 101 | 100 | ex |  | 
						
							| 102 | 77 101 | impbid |  | 
						
							| 103 | 102 | ralbidv |  | 
						
							| 104 | 8 103 | bitrd |  |